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Abstract: Within the superspace formulation for four-dimensional N = 2 matter-coupled

supergravity developed in arXiv:0805.4683, we elaborate two approaches to reduce the su-

perfield action to components. One of them is based on the principle of projective in-

variance which is a purely N = 2 concept having no analogue in simple supergravity. In

this approach, the component reduction of the action is performed without imposing any

Wess-Zumino gauge condition, that is by keeping intact all the gauge symmetries of the

superfield action, including the super-Weyl invariance. As a simple application, the c-map

is derived for the first time from superfield supergravity. Our second approach to compo-

nent reduction is based on the method of normal coordinates around a submanifold in a

curved superspace, which we develop in detail. We derive differential equations which are

obeyed by the vielbein and the connection in normal coordinates, and which can be used

to reconstruct these objects, in principle in closed form. A separate equation is found for

the super-determinant of the vielbein E = Ber(EM
A), which allows one to reconstruct E

without a detailed knowledge of the vielbein. This approach is applicable to any super-

gravity theory in any number of space-time dimensions. As a simple application of this

construction, we reduce an integral over the curved N = 2 superspace to that over the

chiral subspace of the full superspace. We also give a new representation for the curved

projective-superspace action principle as a chiral integral.
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1 Introduction

One of the main virtues of superspace approaches to supergravity theories in diverse dimen-

sions is the possibility to write down the most general locally supersymmetric actions for-

mulated in terms of a few superfield dynamical variables possessing, as a rule, a transparent

geometric origin. The price to pay for this generality is that working out a reduction from

the parental superfield action to its component counterpart requires some special care. Be-

ing trivial conceptually, such a reduction may be technically quite involved and challenging.

The present paper is aimed at carrying out a component reduction, as well as a partial

superspace reduction, for the action principle occurring within the superspace formulation

for four-dimensional N = 2 matter-coupled supergravity recently developed in [1], as a
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natural extension of the earlier construction for 5D N = 1 supergravity [2, 3]. The matter

fields in [1] are described in terms of covariant projective multiplets which are curved-

space versions of the superconformal projective multiplets [4] living in rigid projective

superspace [5]. In addition to the local N = 2 superspace coordinates1 zM = (xm, θµ
i , θ̄i

µ̇),

such a supermultiplet, Q(n)(z, u+), depends on auxiliary isotwistor variables u+
i ∈ C2 \{0},

with respect to which Q(n) is holomorphic and homogeneous, Q(n)(c u+) = cn Q(n)(u+),

on an open domain of C2 \ {0} (the integer parameter n is called the weight of Q(n)). In

other words, such superfields are intrinsically defined in CP 1. The covariant projective

supermultiplets are required to be annihilated by half of the supercharges,

D+
α Q(n) = D̄+

α̇ Q(n) = 0 , D+
α := u+

i Di
α , D̄+

α̇ := u+
i D̄i

α̇ , (1.1)

with DA = (Da,D
i
α, D̄α̇

i ) the covariant superspace derivatives. The dynamics of

supergravity-matter systems are described by locally supersymmetric actions of the

form [1]:

S =
1

2π

∮

C

(u+du+)

∫

d4xd4θd4θ̄ E
WW̄L++

(Σ++)2
, E−1 = Ber(EA

M ) , (1.2)

where

Σ++ :=
1

4

(

(D+)2 + 4S++
)

W =
1

4

(

(D̄+)2 + 4S̄++
)

W̄ = Σiju+
i u+

j . (1.3)

Here the Lagrangian L++(z, u+) is a covariant real projective multiplet of weight two,

W (z) is the covariantly chiral field strength of an Abelian vector multiplet, S++(z, u+) =

Sij(z)u+
i u+

j and S̄++(z, u+) = S̄ij(z)u+
i u+

j are special dimension-1 components of the

torsion. The action (1.2) can be shown to be invariant under the supergravity gauge

transformations, and it is also manifestly super-Weyl invariant [1]. It can also be rewritten

in the equivalent form

S =
1

2π

∮

C

(u+du+)

∫

d4xd4θd4θ̄ E
L++

S++S̄++
(1.4)

in which, however, the super-Weyl invariance is not manifest. The latter form makes

transparent the fact that the action is independent of the compensating vector multiplet

described by W and W̄ provided L++ is independent of it.

As argued in [1, 6], the dynamics of a general N = 2 supergravity-matter system can

be described by an action of the form (1.2), including the chiral actions which can always

be brought to the form (1.2). This is why the action principle (1.2) is of fundamental

importance in N = 2 supergravity.

There are two special properties of the action (1.2) that we would like to point out.

First of all, the integration in (1.2) is carried out over the full superspace, therefore one has

to integrate out eight Grassmann variables in order to reduce the action to components.

Secondly, the Lagrangian in (1.2) obeys the analyticity constraints (1.1) which enforce L++

to depend on only half of the superspace Grassmann variables. In this respect, the N = 2

1World indices take values m = 0, 1, · · · , 3, µ = 1, 2, µ̇ = 1, 2 and i = 1, 2, and similarly for tangent

space indices; see appendix A for our notation and conventions.
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action (1.2), or more precisely its equivalent form (1.4), is analogous to the chiral action in

4D N = 1 supergravity [7, 8], as specially emphasised in [9]. These two features of the N =

2 supergravity action hint at an opportunity to use the experience gained and the techniques

developed, e.g., in 4D N = 1 superfield supergravity, in order to reduce (1.2) to components.

In textbooks on 4D N = 1 supergravity [10–12], one can find two methods of com-

ponent reduction. One of them (to be referred to as method 1 ), elaborated in detail2

in [10, 11], was originally introduced by Wess and Zumino [13] and presents itself as a

version of the Noether procedure. It involves the following two steps:

(i) starting from the superfield dynamical variables, one first reads off corresponding

multiplets of component fields and their local supersymmetry transformations, using

a Wess-Zumino gauge imposed on the superfield vielbein and connection;

(ii) after that, the desired density multiplet is iteratively reconstructed from its lowest

component in conjunction with the known supersymmetry transformation laws.

This method was further developed, and generalized to the case of chiral actions in N = 2

supergravity, in [16–18] using covariant expansions with respect to Θ-variables [10, 13] of

somewhat mysterious geometric origin. The other approach (method 2 ) was elaborated in

detail in [12], although its first application in the case of pure supergravity was given by

Gates and Siegel [8]. It can be implemented provided there exists a formulation of the

given supergravity theory in terms of unconstrained prepotentials, and such a formulation

is indeed available in the case of 4D N = 1 supergravity [8, 19]. It involves the same step

(i) as above modulo the fact that a Wess-Zumino gauge is now imposed on the supergravity

prepotentials. Its real gain is that, instead of carrying out the painfully laborious procedure

(ii) of method 1, now one should simply do an ordinary Grassmann integral.

Both methods discussed above are hardly of any practical use in the case of N = 2

supergravity formulation under consideration. Being applicable in principle, method 1 be-

comes too laborious to be used for general N = 2 supergravity-matter systems. As to

method 2, no prepotential formulation is yet available for the projective-superspace formu-

lation for N = 2 supergravity given in [1]. A prepotential formulation for N = 2 super-

gravity has been constructed within the harmonic-superspace approach [20–22].3 However,

no comprehensive analysis of the component reduction in curved harmonic superspace has

yet appeared.

A relatively new paradigm for component reduction in supergravity appeared some ten

years ago. As advocated in refs. [15, 25], which built on the earlier work [26], an ideal means

to perform covariant theta-expansions and integrate out Grassmann variables is provided by

the superspace normal coordinates introduced a quarter of a century ago by McArthur [27]

2More precisely, ref. [11] only stated the density formula and sketched its derivation. Years later, three

of the authors of [11] came up with simple alternative derivations of the density formula [14, 15].
3In the rigid supersymmetric case, the harmonic [20] and the projective [5, 23] approaches are closely

related [24], and this should extend, in principle, to the case of supergravity.
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for completely different aims.4 This technique was applied in [15, 25] to compute the

density formula for several supergravity models in diverse dimensions including the case

of 4D N = 1 supergravity. Since the method of fermionic normal coordinates employed

in [15, 25] is a version of Wess-Zumino gauge in curved superspace, this construction is

ultimately related to the earlier approaches pursued in [16–18].

The powerful property of the method of normal coordinates5 [27] is its universality,

as emphasized in [15] (of course, this is not accidental, for the method is a superspace

extension of the Riemann normal coordinates). It can be used for any supergravity theory

formulated in superspace, for any number of space-time dimensions. For example, it has

recently been used in the case of eleven dimensional supergravity [31]. In particular, it

can be applied to reduce the action (1.2) to components. However, the latter application

would still require a nontrivial computational effort. Remarkably, the specific feature of

4D N = 2 supergravity (and also 5D N = 1 supergravity) is that it offers us an alternative

and much more efficient scheme to reduce the action (1.2) to components which is based

on the principle of projective invariance [2, 32, 33]. This unusual invariance, which has

no analogue in the N = 1 case, is easy to visualize in a flat superspace limit where the

action (1.2) reduces to

Sflat =
8

π

∮

(u+du+)

∫

d4xd4θd4θ̄
WW̄L++(u+)

(D+)2W (D̄+)2W̄

=
1

2π

∮

(u+du+)

(u+u−)4

∫

d4x (D−)2(D̄−)2L++(u+)
∣

∣

θ=θ̄=0
. (1.5)

Here the spinor derivatives D−
α and D̄−

α̇ are obtained from D+
α and D̄+

α̇ by replacing

u+
i → u−

i , with the latter being a fixed constant isotwistor for which the only constraint

is (u+u−) 6= 0 at each point of the integration contour. Since L++ is a weight-two rigid

projective supermultiplet, the action can be seen to be invariant under arbitrary projective

transformations of the form:

(ui
− , ui

+) → (ui
− , ui

+)R , R =

(

a 0

b c

)

∈ GL(2, C) . (1.6)

Clearly, this projective invariance is almost obvious in flat superspace. In curved super-

space, however, it turns into a powerful constructive principle to reduce the action (1.2)

to components, and what is most non-trivial – without imposing any Wess-Zumino

gauge condition!

4In [28], the normal coordinate techniques [27] were applied to compute the so-called b4 (or, equivalently,

a2) coefficients for chiral matter in 4D N = 1 supergravity. Although there exists a purely covariant and

very efficient approach to evaluate the Schwinger-DeWitt coefficients in curved superspace [29], the method

of superspace normal coordinates [27] proves to be truly indispensable for deriving the density formulae in

supergravity theories, as emphasized in [15].
5In N = 1 supergravity, there exists a different normal coordinate construction [30] based on the pre-

potential formulation due to Ogievetesky and Sokatchev [19]. This normal gauge should possess a natural

extension to the case of N = 2 supergravity formulated in harmonic superspace [20–22], and it would be

very interesting to work out such an extension explicitly.
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This paper is organized as follows. In section 2, we provide an alternative derivation of

normal coordinates around a submanifold in an arbitrary curved superspace. Although the

consideration given in [15] involves some ingenious acrobatics, it leaves several important

questions unanswered such as the explicit structure of equations which could allow one to

derive normal coordinate expressions for the connection and the vielbein to any order in

perturbation theory (in this respect, the work [31], which closely follows the original normal

coordinate construction of [27], contains very useful results). Our presentation in section

2 is based in part on earlier approaches developed in general relativity [34] and quantum

gravity [35–38] many years ago, as well as some more recent covariant techniques for super

Yang-Mills theories [39].6 Here we derive differential equations which are obeyed by the

vielbein and the connection in normal coordinates, and which can be used to reconstruct

these objects, in principle in closed form. We also present an equation for the super-

determinant of the vielbein, E = Ber(EM
A), which allows one to reconstruct E without a

detailed knowledge of the vielbein. As an application of the techniques developed in section

2, in section 3 we explicitly reduce an integral over the full 4D N = 2 curved superspace

to that over the chiral subspace.

Section 4 is central to the present work. Here we reduce the action (1.2) to components

using the principle of projective invariance. We also consider two applications. First, we

prove the gauge invariance of the special vector-tensor coupling introduced in [1]. Second,

we give a curved superspace description for the c-map [41, 42]. In section 5, we derive a

new representation for the covariantly chiral projector and use this result to reformulate

the action (1.2) as a chiral integral.

This paper is accompanied by three technical appendices. In appendix A we collect the

salient points of the superspace formulation for N = 2 supergravity, following [1], which

are essential for understanding the main results of this paper. Appendix B summarizes the

main properties of covariant projective supermultiplets following [1]. Finally, appendix C

provides the proof of eq. (5.1).

2 Integrating out fermionic dimensions

In this section, we temporarily leave aside the main object of our study – N = 2 matter-

coupled supergravity in four space-time dimensions, and instead discuss the problem of

defining a normal coordinate system around a submanifold of a curved superspace with

any number of bosonic and fermionic dimensions. We will present an application of the

formalism developed to the case of 4D N = 2 supergravity in section 3.

2.1 Parallel transport and associated two-point functions

Let us consider a curved superspace M ≡ Md|δ with d space-time and δ fermionic di-

mensions, and let zM be local coordinates chosen to parametrize M. The corresponding

superspace geometry is described by covariant derivatives

DA = EA + ΦA , EA := EA
M (z) ∂M , ΦA := ΦA(z)·J = EA

MΦM . (2.1)

6The material in section 2 is based in part on unpublished lecture notes by one of us (SMK) [40].
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Here J denotes the generators of the structure group7 G (with all indices of Js suppressed),

EA is the inverse vielbein, and Φ = dzMΦM = EAΦA the connection. As usual, the

matrices defining the vielbein EA := dzMEM
A(z) and its inverse EA obey the identities

EA
MEM

B = δA
B and EM

AEA
N = δM

N . An infinitesimal G-transformation acts on the

components of a vector field v = vAEA and a one-form ω = EAωA as follows:

[λ·J, vA] = λA
BvB = −vBλB

A , [λ·J, ωA] = −ωBλB
A = λA

BωB , (2.2)

such that (v)ω := vAωA is invariant. Here we have assumed that the structure group

transformations preserve the Grassmann parity ε of any tensor superfield, which requires

ε(λA
B) = 0, and the transformation parameters are defined to obey λA

B = −λB
A.

The covariant derivatives obey the algebra

[DA,DB} = TAB
CDC + RAB·J , (2.3)

with TAB
C the torsion, and RAB the curvature of M. In particular,

{DA,DB}ωC = TAB
DDD ωC + RABC

D ωD , (2.4)

when acting on the one-form ωA.

It is pertinent to our consideration to recall the basic facts about parallel transport.

Let z′ ∈ M be a given superspace point, and γ(t) = {zM (t)} a smooth curve in M such that

γ(0) = z′. For the tangent vector to γ at z(t), we convert its world index into a local flat one,

ζA(t) := żM (t)EM
A(z(t)) . (2.5)

Let vA′

= vM ′

EM ′
A′

(z′) be a tangent vector at z′, v ∈ Tz′M. Its parallel transport along

γ, v(t) ∈ Tz(t)M, is defined to satisfy the equation

(

d

dt
+ ζB(t)ΦB(t)

)

vA(t) = 0 . (2.6)

The parallel transport of a tensor V ′ at z′ along the curve γ(t) is defined similarly.

All information about parallel transport along the curve γ(t) is encoded in the cor-

responding parallel displacement propagator along γ, Iγ(t) ∈ G, which is defined by the

following conditions:

(i) the parallel transport equation

(

d

dt
+ ζB(t)ΦB(t)

)

Iγ(t) = 0 ; (2.7)

(ii) the initial condition

Iγ(0) = 1 . (2.8)

7The formalism below can be readily generalized to incorporate an internal Yang-Mills group Gint by

replacing G → G × Gint.

– 6 –
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Then, for any tensor V ′ at z′, its parallel transport along γ(t) is

V(t) = D
(

Iγ(t)
)

V ′ , (2.9)

where D is the representation of the structure group G in which the tensor transforms.8

As is known, a unique solution to eqs. (2.7) and (2.8) is the path-ordered exponential

Iγ(t) = P e−
R

γ
Φ . (2.10)

The important feature of the equation (2.7) is its invariance under reparametrizations of

the curve.

Now, let γ̂(t) = {zM (t)} be a geodesic through z′,

(

d

dt
+ ζB(t)ΦB(t)

)

ζA(t) = 0 , γ̂(0) = z′ . (2.11)

For any point zM (t) on the geodesic, we define I
(

z(t); z′
)

:= Iγ̂(t). Since any two points

z′ and z in M can be connected by a geodesic, which is locally unique modulo worldline

reparametrizations, we obtain a well-defined two-point function

I(z; z′) ∈ G , I(z′; z′) = 1 . (2.12)

It will be called the parallel displacement propagator.

The freedom to choose affine parametrization of the geodesic, which connects z′ and

z, can be fixed as

z′ = γ̂(0) , z = γ̂(1) , (2.13)

which corresponds to the standard exponential mapping (see, e.g., [43]). For this

parametrization, we define vector two-point functions9

ζA(z; z′) := ζA(t = 1) ∈ TzM , (2.14a)

ζA′

(z′; z) := −ζA(t = 0) ∈ Tz′M . (2.14b)

These functions are related to each other as follows:

ζA(z; z′) = −
[

I(z; z′)
]A

B′ ζB′

(z′; z) . (2.15)

The parallel displacement propagator, I(z; z′), obeys the differential equations:

ζBDBI(z; z′) = 0 , (2.16a)

ζB′

DB′I(z; z′) = 0 . (2.16b)

8In what follows, we do not indicate explicitly the representation D of the structure group, and the

matrix D
`

Iγ(t)
´

will always be written simply as Iγ(t).
9In the case when M is an ordinary Riemannian manifold, in particular if TAB

C = 0, one can show that

ζA(z, z′) = DAσ(z, z′) and ζA′

(z′; z) = DA′

σ(z, z′), where σ(z, z′) = σ(z′, z) is the so-called world function

coinciding with half the square of the geodesic distance between the points z′ and z, see [34–36] for more

detail. In the mathematics literature, the σ(z, z′) is sometimes referred to as the distance function [43].

– 7 –
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These equations follow from (2.7). It also holds that

I(z; z′) I(z′; z) = 1 . (2.17)

As to the two-point functions ζA(z; z′) and ζA′

(z′; z), they enjoy the following equations:

ζBDBζA = ζA , (2.18a)

ζBDBζA′

= ζA′

. (2.18b)

To prove eq. (2.18a), it suffices to note that for a geodesic zM (t) passing through z′,

z(0) = z′, we have

ζA(z(t); z′) = t ζA(t) , (2.19)

with ζA(t) the tangent vector to the given geodesic at z(t). Then, it only remains to

use the geodesic equation (2.11). As to equation (2.18b), it now follows from the rela-

tions (2.15), (2.16a) and (2.18a).

2.2 Covariant Taylor expansion

Let V(z) be a tensor superfield transforming in some representation of the structure group.

Then it can be expanded in a covariant Taylor series of the form:

I(z′; z)V(z) =
∞
∑

n=0

(−1)n

n!
ζA′

n . . . ζA′

2ζA′

1 DA′

1
DA′

2
. . .DA′

n
V(z′) . (2.20)

It can be justified simply by generalizing the proof given, e.g., in [37] for the case when M

is a Riemannian manifold.

2.3 Parallel transport around the submanifold

Up to now, we have considered all possible geodesics passing through a fixed point z′ ∈ M,

where the latter have been completely arbitrary. From now on, we turn to a more general

setup. First of all, we will restrict z′ to belong to a fixed submanifold Σ ≡ Σd′|δ′ of

the superspace M = Md|δ, with δ′ < δ or/and d′ < d. Secondly, we will only consider

those geodesics γ̂(t) through z′, γ̂(0) = z′, which are transverse to Σ. To make the latter

requirement more precise, we assume in addition that the vielbein EAs can be split into

two disjoint subsets,

EA = (Eâ, Eα̂) , (2.21)

such that the set of one-forms Eâ|z′ constitutes a basis of the cotangent space T ∗
z′Σ at any

point z′ ∈ Σ. Then, the requirement that γ̂(t) be transverse to Σ, will mean the following:

żM (0)EM
â(z′) = 0 , z(0) = z′ ∈ Σ . (2.22)

Finally, we put forward one more technical requirement, that the structure group G acts

reducibly on EAs such that each of the two subsets Eâs ad Eα̂s transforms into itself under

– 8 –
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the action of G. The setup introduced here reduces to that considered in subsection 2.1 if

Σ shrinks down to a single point z′.

Let z̃m̂ be local coordinates parametrizing the submanifold Σ. These variables can be

extended to provide a local coordinate system zM = (z̃m̂, yµ̂) in the whole superspace M

in such a way that along Σ we have

zM
∣

∣

Σ
= (z̃m̂, yµ̂ = 0) . (2.23)

Reparametrization invariance can be further used to choose

EM
A(z)

∣

∣

Σ
=

(

Em̂
â(z̃) Em̂

α̂(z̃)

0 δµ̂
α̂

)

. (2.24)

Then, eq. (2.22) becomes

żM (0) =
(

0, ẏµ̂(0)
)

. (2.25)

In terms of ζA(t), eq. (2.5), this is equivalent to

ζA(0) = ζ µ̂δµ̂
A , ζ µ̂ ≡ ẏµ̂(0) . (2.26)

It follows from the above consideration that

ζ â(z; z′) = ζ â′

(z′; z) = 0 . (2.27)

As an example, let us consider a curved superspace corresponding to four-dimensional

N = 2 conformal supergravity reviewed in appendix A. It follows from the anticommuta-

tion relations (A.9b) that the vector fields10 Eα̂ := Ēα̇
i generate an involutive distribution

(see, e.g., [43] for a review of the relevant differential-geometric constructions), that is

{Ēα̇
i , Ēβ̇

j } = C α̇
i

β̇
j

k
γ̇(z)Ēγ̇

k . (2.28)

Then, the Frobenius theorem (see, e.g., [43]) implies that one can replace the original local

coordinates zM by new ones, {z̃m̂, ρµ̂}, with the properties:

Eα̂z̃m̂ = 0 , Eα̂ = Nα̂
µ̂(z̃, ρ)

∂

∂ρµ̂
, (2.29)

for some non-singular matrix Nα̂
µ̂. It is clear that covariantly chiral scalar superfields,

D̄α̇
i Φ = 0, are functions of the variables z̃m̂, Φ = Φ(z̃). The submanifold Σ in the above

discussion will be identified with the chiral subspace defined by the equations ρµ̂ = 0.

Replacing ρµ̂ by new variables yµ̂ defined as

ρµ̂ = yν̂ δν̂
α̂ Nα̂

µ̂(z̃, ρ) , (2.30)

one can see that the inverse vielbein restricted to Σ has the form:

EA
M (z)

∣

∣

Σ
=

(

Eâ
m̂(z̃) Eâ

µ̂(z̃)

0 δα̂
µ̂

)

. (2.31)

This result is equivalent to (2.24). In the example considered, the involutive distribution

generated by Ēα̇
i , determines all the tangent vectors being transverse to Σ.

10The inverse vielbein is thus EA = (Eâ, Eα̂), where Eâ := (Ea, Ei
α).
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2.4 Normal coordinates around the submanifold

A normal coordinate system11 around Σ is defined by the following two conditions:

(i) All geodesics, which are transverse to Σ, are straight lines.

z̃m̂(t) = z̃m̂ , yµ̂(t) = t ζ µ̂ . (2.32)

Such a geodesic connects the superspace points (z̃, 0) and (z̃, ζ).

(ii) Fock-Schwinger (or structure group) gauge:

I
(

z; z′
)

= I
(

z̃, ζ; z̃, 0
)

= 1 . (2.33)

For the two-point function ζA(z, z′), eq. (2.14a), the condition (2.32) implies

ζA(z; z′) = ζ µ̂Eµ̂
A(z̃, ζ) ≡ ζMEM

A(z̃, ζ) , ζM := (0, ζ µ̂) . (2.34)

For the two-point function ζA′

(z′; z), eq. (2.14b), the condition (2.26) gives

ζA′

(z′; z) = −ζMδM
A . (2.35)

Now, using eqs. (2.15) and (2.33) gives

ζMEM
A(z̃, ζ) = ζMδM

A = ζ µ̂δµ̂
α̂ . (2.36)

Furthermore, using eqs. (2.16a) and (2.33) gives

ζAΦA(z̃, ζ)·J = ζMΦM (z̃, ζ)·J = 0 . (2.37)

The relations (2.36) and (2.37) are the key results for applications.12 These relations did

not appear in [15]. It is worth pointing out that eq. (2.37) implies

Φα̂(z̃, 0)·J = Φµ̂(z̃, 0)·J = 0 , (2.38)

while no restriction is imposed on Φm̂(z̃, 0)·J which is the connection on Σ.

Relations (2.36) and (2.37) can be rewritten in terms of the operation of interior

product, ıζ . It is worth recalling how the latter is defined. Given a vector field V =

VM∂M = VAEA and a p-form

Ω =
1

p!
dzMp . . . dzM1ΩM1...Mp =

1

p!
EAp . . . EA1ΩA1...Ap , (2.39)

the (p − 1)-form ıVΩ is defined as

ıVΩ =
1

(p − 1)!
dzMp . . . dzM2VM1ΩM1...Mp =

1

(p − 1)!
EAp . . . EA2VA1ΩA1...Ap . (2.40)

Now, eqs. (2.36) and (2.37) can be rewritten as follows:

ıζE
A = ζMδM

A = ζ µ̂δµ̂
α̂ , (2.41a)

ıζΦA
B = 0 , (2.41b)

with ΦA
B = dzMΦMA

B = ECΦCA
B the connection one-form.

11In Riemannian geometry, normal coordinates around a submanifold were discussed in [44].
12In the zero-dimensional case when Σ reduces to a single point z′, the relations (2.36) and (2.37) are

equivalent to those given in [27]. In the case when Σ = Σ(d,0) is the bosonic body of the curved superspace

M = M(d,δ), the relations (2.36) and (2.37) were derived in [31] in a different manner.
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2.5 Structure equations

We turn to uncovering the implications of eqs. (2.41a) and (2.41b), building on the con-

struction in Riemannian geometry given in [45, 46].

We start by introducing the torsion two-form

TA =
1

2
ECEBTBC

A (2.42)

and the curvature two-form

R·J =
1

2
EDECRCD·J , [R·J, ωA] = RA

BωB =
1

2
EDECRCDA

BωB , (2.43)

with ωA an arbitrary one-form. They obey the structure equations:

− TA = dEA − EBΦB
A , (2.44a)

RA
B = dΦA

B − ΦA
CΦC

B . (2.44b)

Let us make use of the well-known differential geometric relation

Lζ = ıζ d + d ıζ , (2.45)

with Lζ the Lie derivative. Applying both sides of this relation to ΦA
B and using the

structure equation (2.44b) and the gauge condition (2.41b), we obtain

LζΦA
B = ıζRA

B . (2.46)

Similarly we can evaluate LζE
A to obatin

LζE
A = DζA − ıζT

A , DζA := dζA − ζBΦB
A . (2.47)

Applying again Lζ to both sides of (2.47) and making use of the gauge conditions and the

structure equations, one obtains

(Lζ − 1)LζE
A = −DζD ζCTCD

A + (ıζT
D) ζCTCD

A − EDζCLζTCD
A

−ζBıζRB
A . (2.48)

Here the Lie derivative of the torsion tensor can be represented, due to (2.37), as

LζTCD
A = ζ ν̂∂ν̂TCD

A = ζ β̂D
β̂
TCD

A . (2.49)

The Lie derivative of a one-form is

LVωM = VN∂NωM +
( ∂

∂zM
VN
)

ωN , (2.50)

and thus

LζωM = ζ ν̂∂ν̂ωM + δM
ν̂ων̂ =⇒

{

Lζωm̂ = ζ · ∂ ωm̂

Lζωµ̂ = (ζ · ∂ + 1)ωµ̂ .
(2.51)
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The relations (2.46) and (2.47), and their corollary (2.48), allow us to reconstruct the

connection ΦMA
B(z̃, ζ) and the vielbein EM

A(z̃, ζ) as Taylor series in ζs, in which all the

coefficients (except the leading ζ-independent terms) are tensor functions of the torsion,

the curvature and their covariant derivatives evaluated at ζ = 0 (of course, there also

occur contributions involving the field Em̂
α̂(z̃) defined in (2.24)). Indeed, consider a tensor

superfield V such as TCD
A or RCDB

A and their covariant derivatives. In the normal gauge,

the covariant Taylor expansion, eq. (2.20), becomes

V(z̃, ζ) =

∞
∑

n=0

1

n!
ζ α̂n . . . ζ α̂1 Dα̂1 . . .Dα̂nV(z̃, 0) ≡

∞
∑

n=0

V(n) , ζ · ∂V(n) = nV(n) , (2.52)

with ζ α̂ ≡ ζ µ̂δµ̂
α̂. Eq. (2.46) can be rewritten in the component form:

LζΦMA
B(z̃, ζ) = EM

D(z̃, ζ) ζ γ̂ Rγ̂DA
B(z̃, ζ) , (2.53)

and similarly for eq. (2.47) or its corollary (2.48). Now, all tensors involved have to be

represented by covariant Taylor series of the form (2.52), while ΦMA
B(z̃, ζ) and EM

A(z̃, ζ)

have to be given as ordinary Taylor series, in particular

EM
A(z̃, ζ) =

∞
∑

n=0

1

n!
ζ ν̂n . . . ζ ν̂1 ∂ν̂1 . . . ∂ν̂nEM

A(z̃, 0) ≡
∞
∑

n=0

E(n)
M

A . (2.54)

In accordance with (2.51), the Lie derivative Lζ acts on E(n)
M

A in (2.54), which is

homogeneous of n-th degree in ζ, as the operator of multiplication by n if M = m̂ or by

(n + 1) if M = µ̂.

2.6 Computing the determinant of the vielbein

Of crucial importance is the explicit ζ-dependence of the determinant E := Ber(EM
A).

The simplest way to address this problem is to derive a differential equation obeyed by E

that follows from the equations given in the previous section.

Using the standard identity δE = (−1)ME δEM
A EA

M in conjunction with eq. (2.51),

we obtain

ζ · ∂ ln E = (−1)M
[

LζEM
A − δM

ν̂Eν̂
A
]

EA
M . (2.55)

The right-hand side here can be transformed using the structure equation (2.47) to get

ζ · ∂ ln E = −(−1)A
[

Φ
Aβ̂

Aζ β̂ + ζ β̂T
β̂A

A
]

+ (−1)µ̂δµ̂
α̂
(

Eα̂
µ̂ − δα̂

µ̂
)

. (2.56)

This is the master equation to determine the ζ-dependence of E = E(z̃, ζ) under the

boundary condition E(z̃, 0) = E(z̃), where E = Ber
(

Em̂
â
)

is the determinant of the vielbein

on the submanifold, as introduced in eq. (2.24). Eq. (2.56) shows that one has to know

the ζ-dependence of the connection in order to evaluate that of E. This result is quite nice

and, at the same time, somewhat counter-intuitive, for one usually evaluates the vielbein

only, while the explicit structure of the connection is completely ignored. For instance, the

authors of [15] use a more laborious approach, which is:
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(i) to compute the ζ-dependence of the vielbein EM
A by iterations; and then

(ii) to evaluate the determinant of the vielbein.

Equation (2.56) can be rewritten in a somewhat different form if one recalls that the

structure group has been assumed to act reducibly, that is Φ
Aβ̂

C = Φ
Aβ̂

γ̂ δγ̂
C . This gives

ζ · ∂ ln E = −(−1)α̂Φ
α̂β̂

α̂ζ β̂ − (−1)Aζ β̂T
β̂A

A + (−1)µ̂δµ̂
α̂
(

Eα̂
µ̂ − δα̂

µ̂
)

. (2.57)

It often happens that

(−1)AT
β̂A

A = 0 . (2.58)

In particular, such a situation occurs in the cases of N = 1 and N = 2 supergravity when

ζ α̂ are Grassmann coordinates. In this case we end up with the remarkably simple equation:

ζ · ∂ ln E = −(−1)α̂Φ
α̂β̂

α̂ζ β̂ + (−1)µ̂δµ̂
α̂
(

Eα̂
µ̂ − δα̂

µ̂
)

. (2.59)

3 Reduction to chiral subspace in N = 2 supergravity

As an illustration of the normal coordinate techniques developed in section 2, here we

apply the scheme to the case when M is the curved 4D N = 2 superspace as defined in

appendix A, and Σ its chiral subspace. All the relevant information regarding the chiral

subspace can be found at the end of subsection 2.3. Our goal is to reduce an integral over

the full superspace,
∫

d4xd4θd4θ̄ E U , to that over the chiral subspace, for any scalar and

isoscalar superfield U .

In this section we continue to use the “hat” index notation, which was introduced in

section 2, as much as possible, keeping in mind that, for instance, Dα̂ := D̄α̇
i . We also use

the notation (2.52), with V(n) denoting the n-th level of the ζ-expansion of V. Moreover,

one more piece of notation used throughout this section is the following: given a superfield

U(z), we denote U | = U(z)|Σ to be its projection to the chiral superspace.

We focus on the computation of E using equation (2.59) which in our case becomes

ζ · ∂ ln E = Eα̂
µ̂Φ

µ̂β̂
α̂ζ β̂ − δµ̂

α̂
(

Eα̂
µ̂ − δα̂

µ̂
)

. (3.1)

One should bear in mind that the connection now includes both the Lorentz and SU(2)

terms, see appendix A. To determine the right hand side of (3.1) one needs to know special

components of the connection, the vielbein and its inverse as functions of ζ. These can be

found by solving iteratively, order-by-order in powers of ζ, the equations13 (2.46)–(2.48).

One can notice several important simplifications even before starting to solve

eqs. (2.46)–(2.48). First of all, equation (2.29) tells us that

Eµ̂
â = Eα̂

m̂ = 0 . (3.2)

13Equation (2.47) has to be used instead of (2.48) in order to determine the vielbein at first order in ζ.

This follows from the fact that (Lζ − 1)LζE(1)
m̂

A = 0.
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Second, since the structure group does not mix up the one-forms Eâ and Eα̂, the following

identities hold: Φâ
β̂ = Φα̂

b̂ = Râ
β̂ = Rα̂

b̂ = 0. These results imply that eqs. (2.46)–

(2.48) allow one to evaluate Eµ̂
α̂, Eα̂

µ̂ and Φµ̂α̂
β̂ without knowing the other components

of EM
A, EA

M and ΦM A
B.

Let us turn to evaluating Eµ̂
α̂ and Φµ̂α̂

β̂ using eqs. (2.46)–(2.48). According to the

definition of the normal coordinate system, we have

Eµ̂
α̂| = δµ̂

α̂ , Eα̂
µ̂| = δα̂

µ̂ , Φµ̂α̂
β̂| = 0 . (3.3)

Since T
γ̂β̂

α̂ = 0, equation (2.47) implies that

E(1)
µ̂

α̂ = 0 . (3.4)

Next, equation (2.46) has the following consequence:

(ζ · ∂ + 1)Φµ̂α̂
β̂ = Eµ̂

δ̂ζ γ̂Rγ̂ δ̂α̂
β̂ . (3.5)

To first order in ζ, the latter gives

Φ(1)
µ̂α̂

β̂ =
1

2
δµ̂

δ̂R
δ̂ γ̂ α̂

β̂|ζ γ̂ . (3.6)

To compute Eµ̂
α̂ to second order in ζ, it is handy to use equation (2.48) which gives

E(2)
µ̂

α̂ =
1

6
δµ̂

δ̂R
δ̂ γ̂ β̂

α̂|ζ β̂ζ γ̂ . (3.7)

Next, making use of (3.4) and (3.5) gives

Φ(2)
µ̂α̂

β̂ =
1

3
δµ̂

δ̂(Dρ̂Rδ̂ γ̂ α̂
β̂)|ζ γ̂ζ ρ̂ . (3.8)

Here we have used, for the first time, the covariant Taylor expansion (2.52) of the curvature.

Further iterations lead to

E(3)
µ̂

α̂ = −
1

12
δµ̂

δ̂(Dρ̂Rδ̂ γ̂ β̂
α̂)|ζ β̂ζ γ̂ζ ρ̂ , (3.9a)

Φ(3)
µ̂α̂

β̂ =
1

8
δµ̂

τ̂

(

1

3
Rτ̂ ρ̂δ̂

δ̂′R
δ̂′ γ̂ α̂

β̂ + (Dρ̂Dδ̂
Rτ̂ γ̂ α̂

β̂)

)
∣

∣

∣

∣

ζ γ̂ζ δ̂ζ ρ̂ , (3.9b)

E(4)
µ̂

α̂ =
1

20
δµ̂

β̂

(

1

6
R

β̂τ̂ ρ̂
δ̂′R

δ̂′ δ̂ γ̂
α̂ + (Dτ̂Dρ̂Rβ̂δ̂ γ̂

α̂)

)
∣

∣

∣

∣

ζ γ̂ζ δ̂ζ ρ̂ζ τ̂ . (3.9c)

As a result, we have computed the components Eµ̂
α̂ of the vielbein,

Eµ̂
α̂ = δµ̂

α̂ + E(2)
µ̂

α̂ + E(3)
µ̂

α̂ + E(4)
µ̂

α̂ . (3.10)

Since Eµ̂
â = 0, the components Eα̂

µ̂ of the inverse vielbein constitute the inverse of the

matrix (3.10) which can be easily computed. Now, the master equation (3.1) becomes

ζ · ∂ ln E = δα̂
µ̂Φ(1)

µ̂β̂
α̂ζ β̂ + δα̂

µ̂Φ(2)
µ̂β̂

α̂ζ β̂ + δα̂
µ̂Φ(3)

µ̂β̂
α̂ζ β̂ − δα̂

ν̂δγ̂
µ̂E(2)

ν̂
γ̂Φ(1)

µ̂β̂
α̂ζ β̂

+δα̂
µ̂E(2)

µ̂
α̂ − δα̂

µ̂δγ̂
ν̂E(2)

µ̂
γ̂E(2)

ν̂
α̂ + δα̂

µ̂E(3)
µ̂

α̂ + δα̂
µ̂E(4)

µ̂
α̂ . (3.11)
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At this stage, we need the explicit form of the curvature Rα̂β̂ γ̂
δ̂. In accordance

with (2.4), it can be read off from the anticommutator {D̄α̇
i , D̄β̇

j }, eq. (A.9b).

Rα̂β̂ γ̂
δ̂ = Rα̇

i
β̇
j

γ̇
k

l
δ̇

=
(

4S̄ijε
γ̇(α̇δ

β̇)

δ̇
δl
k + 2εijε

α̇β̇Ȳ γ̇
δ̇δ

l
k + 2εijε

α̇β̇S̄k
lδγ̇

δ̇
+ 4Ȳ α̇β̇εk(iδ

l
j)δ

γ̇

δ̇

)

, (3.12)

and hence

Rα̂β̂ γ̂
α̂ = −4S̄jkε

β̇γ̇ − 4Ȳ β̇γ̇εjk . (3.13)

Now, using (3.13), the relations

ζ α̂ζ β̂ =
1

2

(

εijζ
α̇β̇

− ε
α̇β̇

ζij
)

, ζ
α̇β̇

:= ζα̇kζ
k
β̇

= ζ
β̇α̇

, ζij := ζi
γ̇ζ γ̇j = ζji , (3.14)

ζ α̂ζ β̂ζ γ̂ =
1

3
εjkε

α̇(β̇ζγ̇)qζ
iq −

1

3
ε
β̇γ̇

εi(jζα̇qζ
k)q , (3.15)

and the Bianchi identities (A.12), one can prove that

δα̂
µ̂E(3)

µ̂
α̂ = 0. (3.16)

Then eq. (3.11) drastically simplifies

ζ · ∂ ln E = −
1

3
Rα̂γ̂ β̂

α̂|ζ β̂ζ γ̂ +
1

45
Rα̂τ̂ ρ̂

δ̂R
δ̂ γ̂ β̂

α̂|ζ β̂ζ γ̂ζ ρ̂ζ τ̂ . (3.17)

Making use of the relations (3.12) and (3.13) along with the identities

ζ4 :=
1

3
ζijζij , ζijζkl = −εi(kεl)jζ4 , ζ

α̇β̇
ζ
γ̇δ̇

= εα̇(γ̇ε
δ̇)β̇ζ4 , ζ

α̇β̇
ζij = 0 , (3.18a)

ζ α̂ζ β̂ζ γ̂ζ δ̂ =
1

4

(

εijεklεα̇(γ̇ε
δ̇)β̇ − ε

α̇β̇
ε
γ̇δ̇

εi(kεl)j
)

ζ4 , (3.18b)

equation (3.17) becomes

ζ · ∂ ln E =
4

3
Ȳ α̇β̇|ζ

α̇β̇
−

4

3
S̄ij|ζ

ij +
8

27

(

Ȳ α̇β̇Ȳ
α̇β̇

− S̄ijS̄
ij
)
∣

∣ζ4 . (3.19)

Its solution is given by the simple formula

E = E

(

1 +
2

3
Ȳ α̇β̇ |ζα̇β̇ −

2

3
S̄ij|ζ

ij

)

, (3.20)

where E = Ber (Em̂
â) is the chiral density.

Relation (3.20) can be used to reduce an integral over the full superspace to that over

the chiral subspace. Consider the functional
∫

d4xd4θd4θ̄ E U =

∫

d4xd4θd4ζ E(z̃, ζ)U(z̃, ζ) , (3.21)

where U(z) is a scalar and isoscalar superfield, and z̃m̂ = (xm, θµ
i ) the variables parametriz-

ing the chiral subspace. In the normal coordinates, one represents U by its covariant Taylor
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expansion in ζ, eq. (2.52), then evaluates the product E U , and finally performs the inte-

gration over d4ζ. The result is as follows:
∫

d4xd4θd4θ̄ E U =

∫

d4xd4θ E ∆̄U
∣

∣ . (3.22)

Here ∆̄ denotes the following fourth-order operator:

∆̄ =
1

96

(

(D̄ij + 16S̄ij)D̄ij − (D̄α̇β̇ − 16Ȳ α̇β̇)D̄α̇β̇

)

=
1

96

(

D̄ij(D̄
ij + 16S̄ij) − D̄

α̇β̇
(D̄α̇β̇ − 16Ȳ α̇β̇)

)

, (3.23)

where we have defined

D̄α̇β̇ := D̄
(α̇
k D̄β̇)k , D̄ij := D̄γ̇(iD̄

γ̇
j) . (3.24)

The operator ∆̄ is the N = 2 covariantly chiral projector [18]. Its fundamental property is

that ∆̄U is covariantly chiral, for any scalar and isoscalar superfield U(z),

D̄α̇
i ∆̄U = 0 . (3.25)

In section 5, we obtain a different representation for the chiral projector.

4 Density formula in N = 2 supergravity

In this section, the supergravity action (1.2) is reduced to components using the principle

of projective invariance. We start by elaborating some auxiliary tools.

4.1 Relating the superspace and the space-time covariant derivatives

For any superfield U(z) we define its projection U | to be the lowest component in the

expansion of U(x, θ, θ̄) with respect to θs and θ̄s,

U(z)| := U(x, θ, θ̄)|θ=θ̄=0 . (4.1)

One can similarly define the projection of the covariant derivatives:

DA| := EA
M (z)|∂M +

1

2
ΩA

bc(z)|Mbc + ΦA
kl(z)|Jkl . (4.2)

More generally, given a gauge covariant operator of the form DA1 . . .DAn , its projection
(

DA1 . . .DAn

)
∣

∣ is defined as

(

(

DA1 . . .DAn

)
∣

∣U
)∣

∣

∣
:=
(

DA1 . . .DAnU
)
∣

∣ , (4.3)

with U an arbitrary tensor superfield. The reader should keep in mind that the projection

operation defined above differs from that used in section 3.

In the case of the vector covariant derivatives, Da, their projection can be represented

in the form:

Da| = ∇a + Ψa
γ
k(x)Dk

γ | + Ψ̄a
k
γ̇(x)D̄γ̇

k | + φa
kl(x)Jkl , (4.4)
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with ∇a a space-time covariant derivative,

∇a = ea + ωa , ea = ea
m(x)∂m , ωa =

1

2
ωa

bc(x)Mbc . (4.5)

Here we have introduced several component gauge fields defined as follows:

Ea
m(z)| = ea

m(x) + Ψa
γ
k(x)Ek

γ
m(z)| + Ψ̄a

k
γ̇(x)Eγ̇

k
m(z)| , (4.6a)

Ea
µ
r (z)| = Ψa

γ
k(x)Ek

γ
µ
r (z)| + Ψ̄a

k
γ̇(x)Eγ̇

k
µ
r (z)| , (4.6b)

Ea
r
µ̇(z)| = Ψa

γ
k(x)Ek

γ
r
µ̇(z)| + Ψ̄a

k
γ̇(x)Eγ̇

k
r
µ̇(z)| , (4.6c)

Ωa
bc(z)| = ωa

bc(x) + Ψa
γ
k(x)Ωk

γ
bc(z)| + Ψ̄a

k
γ̇Ωγ̇

k
bc(z)| , (4.6d)

Φa
kl(z)| = φa

kl(x) + Ψa
β
j (x)Ωj

β
kl(z)| + Ψ̄a

j

β̇
Ωβ̇

j
kl(z)| . (4.6e)

These include the inverse vielbein ea
m, the Lorentz connection ωa

bc and the SU(2)-

connection φa
kl, as well as the gravitino fields Ψa

γ
k and Ψ̄a

k
γ̇ .

It is worth noting that if one chooses an N = 2 analogue of Wess-Zumino gauge [13]

defined as

Di
α| =

∂

∂θα
i

, D̄α̇
i | =

∂

∂θ̄i
α̇

, (4.7)

then the relations (4.6a)–(4.6e) considerably simplify and take the form:

Ea
m(z)| = ea

m(x) , Ea
γ
k(z)| = Ψa

γ
k(x) , Ea

k
γ̇(z)| = Ψ̄a

k
γ̇(x) , (4.8a)

Ωa
bc(z)| = ωa

bc(x) , Φa
kl(z)| = φa

kl(x) . (4.8b)

The space-time covariant derivatives obey the commutation relations

[∇a,∇b] = Tab
c(x)∇c +

1

2
Rab

cd(x)Mcd . (4.9)

Here the torsion tensor determines the rule for integration by parts:
∫

d4x e∇av
a =

∫

d4x e vaTab
b , e−1 := det(ea

m) , (4.10)

with va an arbitrary vector field.

The space-time torsion Tab
c and curvature Rab

cd can be related to those appearing in

the superspace (anti-)commutation relations (A.9a)–(A.9e). Using the definition (4.4) and

eqs. (A.9a)–(A.9e), one can evaluate the projection of the commutator [Da,Db] to be

[Da,Db]| = Tab
c∇c − 4iΨ[a

γ
kΨ̄b]

k
δ̇
∇γ

δ̇ +
1

2
Rab

cdMcd − Ψ[a
γ
kRb]

k
γ
cd|Mcd

+
1

2
Ψ[a

γ
kΨb]

δ
l R

k
γ
l
δ
cd|Mcd+

1

2
Ψ̄[a

k
γ̇Ψ̄b]

l
δ̇
Rγ̇

k
δ̇
l
cd|Mcd+Ψ[a

γ
kΨ̄b]

l
δ̇
Rk

γ
δ̇
l
cd|Mcd+2(∇[aΨb]

γ
k)Dk

γ |

−2Ψ[a
α
i Tb]

i
α

γ
kD

k
γ | − 2Ψ̄[a

i
α̇Tb]

α̇
i

γ
kD

k
γ | − 2φ[ak

lΨb]
γ
l D

k
γ | − 4iΨ[a

γ
kΨ̄b]

k
δ̇
Ψγ

δ̇γ
kD

k
γ |

+2(∇[aΨ̄b]
k
γ̇)D̄γ̇

k | − 2Ψ[a
α
i Tb]

i
α

k
γ̇D̄

γ̇
k | − 2Ψ̄[a

k
γ̇Tb]

γ
k

k
γ̇D̄

γ̇
k | + 2φ[a

k
lΨ̄b]

l
γ̇D̄

γ̇
k |

−4iΨ[a
γ
kΨ̄b]

k
δ̇
Ψ̄γ

δ̇k
γ̇D̄

γ̇
k | + 2(∇[aφb]

kl)Jkl − 2Ψ[a
γ
j Rb]

j
γ

kl|Jkl − 2Ψ̄[a
j
γ̇Rb]

γ̇
j

kl|Jkl
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+Ψ[a
γ
i Ψb]

δ
jR

i
γ

j
δ
kl|Jkl + Ψ̄[a

i
γ̇Ψ̄b]

j

δ̇
Rγ̇

i
δ̇
j
kl|Jkl + 2Ψ[a

γ
i Ψ̄b]

j

δ̇
Ri

γ
δ̇
j
kl|Jkl + 2φ[a

k
jφb]

jlJkl

−4iΨ[a
γ
j Ψ̄b]

j

δ̇
φγ

δ̇klJkl . (4.11)

On the other hand, the commutator [Da,Db] can be evaluated using eqs. (A.9a)–(A.9e).

Comparing the similar structures on both sides gives a number of important relations

including the following:

Tab
c = 4iΨ[a

γ
kΨ̄b]

k
δ̇
(σc)γ

δ̇ , (4.12a)

(∇[aΨb]
γ
k) =

1

2
Tab

γ
k| + Ψ[a

α
i Tb]

i
α

γ
k| + Ψ̄[a

i
α̇Tb]

α̇
i

γ
k | + φ[ak

lΨb]
γ
l + 2iΨ[a

δ
l Ψ̄b]

l
δ̇
Ψδ

δ̇γ
k , (4.12b)

(∇[aΨ̄b]
k
γ̇) =

1

2
Tab

k
γ̇ | + Ψ[a

α
i Tb]

i
α

k
γ̇ | + Ψ̄[a

k
α̇Tb]

α̇
k

k
γ̇ | − φ[a

k
lΨ̄b]

l
γ̇ + 2iΨ[a

δ
l Ψ̄b]

l
δ̇
Ψ̄δ

δ̇k
γ̇ , (4.12c)

Rab
cd = Rab

cd| + 2Ψ[a
γ
kRb]

k
γ
cd| + 2Ψ̄[a

k
γ̇Rb]

γ̇
k

cd| − Ψ[a
γ
kΨb]

δ
l R

k
γ
l
δ
cd|

−Ψ̄[a
k
γ̇Ψ̄b]

l
δ̇
Rγ̇

k
δ̇
l
cd| − 2Ψ[a

γ
kΨ̄b]

l
δ̇
Rk

γ
δ̇
l
cd| , (4.12d)

(∇[aφb]
kl) =

1

2
Rab

kl| + Ψ[a
γ
j Rb]

j
γ
kl| + Ψ̄[a

j
γ̇Rb]

γ̇
j
kl| −

1

2
Ψ[a

γ
i Ψb]

δ
jR

i
γ

j
δ
kl| −

1

2
Ψ̄[a

i
γ̇Ψ̄b]

j

δ̇
Rγ̇

i
δ̇
j
kl|

−Ψ[a
γ
i Ψ̄b]

j

δ̇
Ri

γ
δ̇
j
kl| − φ[a

k
jφb]

jl + 2iΨ[a
γ
j Ψ̄b]

j

δ̇
φγ

δ̇kl . (4.12e)

In what follows, we will often use eq. (4.12a), (4.12b) and (4.12c).

4.2 The component action

We turn to demonstrating that the component reduction of action (1.2) is

S =

∮

C

dµ(−2,−4)

∫

d4x e

[

1

16
(D−)2(D̄−)2 +

3

4
S−−(D̄−)2 +

3

4
S̄−−(D−)2 + 9S−−S̄−−

+
i

4
Ψαα̇−

α (D−)2D̄−
α̇ +

i

4
Ψ̄αα̇−

α̇ (D̄−)2D−
α − φαα̇−−D−

α D̄
−
α̇

+(σab)αβΨa
−
α

(

Ψb
−
β (D−)2+2Ψ̄b

β̇−D−
β D̄

−

β̇

)

+(σ̃ab)α̇β̇Ψ̄a
−
α̇

(

Ψ̄b
−

β̇
(D̄−)2+2Ψb

β−D−
β D̄

−

β̇

)

+3i
(

Ψ̄αα̇−
α̇ S̄−−D−

α + Ψαα̇−
α S−−D̄−

α̇

)

− 4φa
−−
(

(σab)βγΨb
−
β D

−
γ − (σ̃ab)β̇γ̇Ψ̄b

−

β̇
D̄−

γ̇

)

+4εabcd(σd)αβ̇
Ψa

α−Ψ̄b
β̇−
(

Ψc
γ−D−

γ + Ψ̄c
γ̇−D̄−

γ̇

)

− 12εabcd(σd)αβ̇
Ψa

α−Ψ̄b
β̇−φc

−−

+12(σab)αβΨa
−
α Ψb

−
β S−− + 12(σ̃ab)α̇β̇Ψ̄a

−
α̇ Ψ̄b

−

β̇
S̄−−

]

L++(z, u+)
∣

∣

∣
, (4.13)

where

S±± := u±
i u±

j Sij , Ψa
±
α := u±

i Ψa
i
α , φa

±± := u±
i u±

j φa
ij , (4.14)

and similarly for S̄±± and Ψ̄a
±
α̇ . The spinor derivatives D−

α and D̄−
α̇ are obtained from D+

α

and D̄+
α̇ defined in (1.1) by replacing u+

i → u−
i . The contour integration measure in (4.13)

is defined as follows:

dµ(−2,−4) ≡ −
1

2π

u+
i du+i

(u+u−)4
= −

1

2π

(u̇+u+)

(u+u−)4
dt , (4.15)

with t an evolution parameter along the contour C, and ḟ := df(t)/dt the time derivative of

a function f(t). Here u−
i is a constant isotwistor subject only to the restriction that u−

i and
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u+
i (t) are linearly independent at each point of the closed contour C, that is (u+u−) 6= 0.

The remainder of this section is devoted to the derivation of (4.13).

In what follows, we often change bases in the space of isotensors by the rule Ai →

A± := Aiu±
i using the completeness relation

(u+u−) δi
j = u+iu−

j − u−iu+
j . (4.16)

We also find it helpful to introduce a notational convention that differs slightly from

that used in [1–3]. Specifically, F (p,q)(u+, u−) denotes a homogeneous function of

u+s and u−s, with integers p and q being the corresponding degrees of homogene-

ity with respect to u+s and u−s, that is: F (p,q)(c u+, u−) = cpF (p,q)(u+, u−) and

F (p,q)(u+, c u−) = cqF (p,q)(u+, u−), where c ∈ C \ {0}. This convention is reflected in the

definition (4.15). In the case of a homogeneous function of u+s only, we use the simplified

notation: F (n)(u+) ≡ F (n,0)(u+); if n > 0, we can also write F (n) ≡ F+···+, where the

number of + superscripts is equal to n. In the case of a homogeneous function of u−s

only, we often use the simplified notation F−···−(u−) ≡ F (0,m)(u−) with m > 0, where the

number of − superscripts is equal to m.

A few words are in order regarding our strategy of deriving (4.13). It is clear that the

component Lagrangian corresponding to the action (1.2) should be a combination of terms

with four and less spinor covariant derivatives acting on L++. In the complete set of spinor

covariant derivatives, Di
α and D̄i

α̇, these derivatives should be linearly independent from

the operators D+
α and D̄+

α̇ which annihilate L++. A natural way to define such a subset of

spinor covariant derivatives is to pick an isotwistor u−
i such that (u+u−) 6= 0. Then the

operators D−
α and D̄−

α̇ clearly satisfy the required criterion. In other words, in order to

construct the component action one is forced to introduce an external isotwistor u−
i which

does not show up in the original action (1.2).14 The latter involves only the isotwistor u+
i ,

and is invariant under arbitrary re-scalings

u+
i (t) → c(t)u+

i (t) , c(t) 6= 0 , (4.17)

along the integration contour. Therefore, the component action should be invariant un-

der arbitrary projective transformations (1.6). Indeed, the invariance under infinitesimal

transformations of the form

u−
i → u−

i + δu−
i , δu−

i = α(t)u−
i + β(t)u+

i (t) , (4.18)

implies independence of the action from the choice of u−
i . Since both u−

i and δu−
i are

required to be time-independent, the transformation parameters should obey the equations:

α̇ = β
(u̇+u+)

(u+u−)
, β̇ = −β

(u̇+u−)

(u+u−)
. (4.19)

Setting β = 0 in (4.18) gives a scale transformation, δu−
i = αu−

i . Therefore, the compo-

nent action must be invariant under arbitrary rigid re-scalings of u−
i . If the component

14This is similar to the Faddeev-Popov quantization of Yang-Mills theories. In order to develop a path-

integral representation for the vacuum amplitue 〈out|in〉, one has to introduce a gauge fixing condition.

However, the amplitue 〈out|in〉 must be independent of the gauge condition introduced.
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Lagrangian density is chosen to be homogeneous in u−
i of degree zero, then the invari-

ance under rigid re-scalings of u−
i clearly extends to that under the time-dependent α-

transformations in (4.18). It turns out that a nontrivial piece of information is provided

by requiring the action to be invariant under the β-transformations in (4.18).

On general grounds, it is not difficult to fix a four-derivative term in the component

Lagrangian corresponding to the action (1.2). We have

S = S0 + · · · , S0 =
1

16

∮

dµ(−2,−4)

∫

d4x e (D−)2(D̄−)2L++(z, u+)
∣

∣

∣
, (4.20)

where the dots denote all the terms with at the most three spinor derivatives. The func-

tional S0 is obviously invariant under the local re-scalings of u+
i , eq. (4.17), and also under

the α-transformations in (4.18). It turns out, however, that S0 is not invariant under the

β-transformation in (4.18). To cancel out the β-variation of S0, it is necessary to add to S0

some terms with three and less spinor derivatives acting on L++. The latter produce new

non-vanishing contributions of lower order under the the β-transformation in (4.18). As a

result, we end up with a well-defined iterative procedure to restore a projective invariant

action. Conceptually, our approach below is quite simple.

Before proceeding with the computation, it is useful to collect some auxiliary results

and make a technical comment. Since the superfield Lagrangian L++(z, u+) is a weight-two

projective supermultiplet, it holds that

JklL
++ = −

1

(u+u−)

(

u+
(ku

+
l)D

(−1,1) − 2u+
(ku

−
l)

)

L++ , (4.21a)

d

dt
L++ = 2

(u̇+u−)

(u+u−)
L++ −

(u̇+u+)

(u+u−)
D(−1,1)L++ , (4.21b)

(u̇+u+)JklL
++ = u+

(ku
+
l)

d

dt
L++ − 2

(u̇+u−)

(u+u−)
u+

(ku
+
l)L

++ + 2
(u̇+u+)

(u+u−)
u+

(ku−
l)L

++ , (4.21c)

with Jkl the SU(2) generators. Here the operator D(−1,1) is defined in (B.3). Consider now

any operator O−−, which is independent of u+, ∂O−−/∂u+i = 0, and is homogeneous in

the variables u−
i of degree +2. Using equations (4.21a)–(4.21c), one gets

(u̇+u+)

(u+u−)4
O−−J−−L++ =

d

dt

[

O−−

(u+u−)2
L++

]

. (4.22)

This implies the following relation:

∮

dµ(−2,−4) O−−J−−L++ = 0 . (4.23)

Due to the identities

[Jkl,D
±
α ] =

u±
(ku−

l)

(u+u−)
D+

α −
u±

(ku
+
l)

(u+u−)
D−

α , [Jkl, D̄
±
α̇ ] =

u±
(ku

−
l)

(u+u−)
D̄+

α̇ −
u±

(ku+
l)

(u+u−)
D̄−

α̇ , (4.24)

{D−
α , D̄−

α̇ } = 8Gαα̇J−− , [J−−,D−
α ] = [J−−, D̄−

α̇ ] = 0 , (4.25)
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we also obtain
∮

dµ(−2,−4) (D−)2(D̄−)2L++ =

∮

dµ(−2,−4) Dα−(D̄−)2D−
αL

++

=

∮

dµ(−2,−4) (D̄−)2(D−)2L++ =

∮

dµ(−2,−4) D̄−
α̇ (D−)2D̄α̇−L++ . (4.26)

These identities justify the fact that S0 is unambiguously defined.

Using equations (4.19) and (4.21a)–(4.21c), one can also prove (compare with the

similar observation in the 5D case [2]) the following result: for any operator O(1,3) kl, which

is an homogenous function of degrees 1 and 3 in u+
i and u−

i , respectively, it holds that
∮

dµ(−2,−4) β O(1,3)klJklL
++

=

∮

dµ(−2,−4) β

(u+u−)

{

4O(1,3)+−L++ + u+
k u+

l

(

D(−1,1)O(1,3)kl
)

L++

}

. (4.27)

This identity will often be used in what follows.

Let us consider the variation of S0, eq. (4.20), under the infinitesimal projective trans-

formation (4.18). Since D+
αL

++ = D̄+
α̇L

++ = 0, we obtain

δS0 =
1

16

∮

dµ(−2,−4)β

∫

d4x e
[

{Dα+,D−
α D̄

−
α̇ D̄

α̇−} + Dα−[D+
α , D̄−

α̇ D̄
α̇−]

+Dα−D−
α {D̄

+
α̇ , D̄α̇−}

]

L++
∣

∣

∣
, (4.28)

which is equivalent to

δS0 =
1

16

∮

dµ(−2,−4)β

∫

d4x e
[

{Dα+,D−
α }D̄

−
α̇ D̄

α̇− + 4{D+
α , D̄−

α̇ }D
α−D̄α̇−

−4[{D−
α , D̄−

α̇ },D
α+]D̄α̇− − 4[{Dα+,D−

α }, D̄
−
α̇ ]D̄α̇− − 2Dα−[{D+

α , D̄−
α̇ }, D̄

α̇−]

+Dα−D−
α {D̄

+
α̇ , D̄α̇−}

]

L++
∣

∣

∣
. (4.29)

Here the (anti)commutators can be evaluated by making use of the algebra (A.9a)–(A.9e).

As a next step, we systematically move the Lorentz and SU(2) generators to the right and

then use the identity MabL
++ = 0 and eq. (4.27). If in this process some spinor covariant

derivatives D+
α or D̄+

α̇ are produced, we push them to the right until they hit L++, and the

latter contribution vanishes due to D+
αL

++ = D̄+
α̇L

++ = 0. We then find

δS0 =
1

16

∮

dµ(−2,−4)β

∫

d4xe
[

− 8i(u+u−)Dαα̇D
α−D̄α̇−−24S+−D̄−

α̇ D̄
α̇−−24S̄+−Dα−D−

α

−16(u+u−)(D̄−
α̇ W̄ α̇δ̇)D̄−

δ̇
− 48(D̄−

α̇ S+−)D̄α̇− − 56(Dβ−S̄+−)D−
β

+8(u+u−)(Dβ−Wβγ)Dγ− + 16(u+u−)(D̄α̇−Gαα̇)Dα−

−192S−−S̄+− − 32(Dβ−D−
β S̄+−) − 16(u+u−)(Dα−D̄α̇−Gαα̇)

]

L++
∣

∣

∣
. (4.30)

This expression can be simplified if one notices that the Bianchi identities (A.11)–

(A.14) imply

D+
α S−− = −2D−

α S+− , DαlS
−l =

3

(u+u−)
D−

α S+− , (4.31a)
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D̄α̇−Gαα̇ =
1

4(u+u−)
D+

α S̄−− +
1

2
Dγ−Wαγ , (4.31b)

Dα−Dβ−Wαβ = 0 , Dα−D−
α S̄+− = 4S+−S̄−− − 4S−−S̄+− , (4.31c)

Dα−D̄α̇−Gαα̇ = −
2

(u+u−)
S+−S̄−− +

2

(u+u−)
S−−S̄+− , (4.31d)

along with complex conjugate relations. We then end up with the following variation:

δS0 =

∮

dµ(−2,−4)β

∫

d4x e

[

−
i

2
(u+u−)Dαα̇D

α−D̄α̇− −
3

2
S+−D̄−

α̇ D̄
α̇− −

3

2
S̄+−Dα−D−

α

−3(D̄−
α̇ S+−)D̄α̇−−3(Dα−S̄+−)D−

α −(u+u−)(D̄−
α̇ W̄ α̇δ̇)D̄−

δ̇
+(u+u−)(Dα−Wαβ)Dβ−

−6S−−S̄+− − 6S+−S̄−−

]

L++
∣

∣

∣
. (4.32)

To cancel out the terms with two derivatives, we add to S0 the following structure:

S1 =

∮

dµ(−2,−4)

∫

d4x e

[

3

4
S−−(D̄−)2 +

3

4
S̄−−(D−)2

]

L++
∣

∣

∣
. (4.33)

Its variation is

δS1 =

∮

dµ(−2,−4)β

∫

d4x e

[

3

2
S+−(D̄−)2 +

3

2
S̄+−(D−)2

−12S−−S̄+− − 12S̄−−S+−

]

L++
∣

∣

∣
, (4.34)

and therefore the functional S0 + S1 varies as

δ(S0 + S1) =

∮

dµ(−2,−4)β

∫

d4x e

[

−
i

2
(u+u−)Dαα̇D

α−D̄α̇− − 3(D̄−
α̇ S+−)D̄α̇−

−3(Dα−S̄+−)D−
α − (u+u−)(D̄−

α̇ W̄ α̇δ̇)D̄−
δ̇

+ (u+u−)(Dα−Wαβ)Dβ−

−18S−−S̄+− − 18S+−S̄−−

]

L++
∣

∣

∣
. (4.35)

To cancel the variation in the last line, we have to add to the action another term

S2 =

∮

dµ(−2,−4)

∫

d4x e
[

9S−−S̄−−
]

L++
∣

∣

∣
. (4.36)

As a result, the functional S0 + S1 + S2 varies as

δ(S0 + S1 + S2) =

∮

dµ(−2,−4)β

∫

d4x e

[

−
i

2
(u+u−)Dαα̇D

α−D̄α̇− − 3(D̄−
α̇ S+−)D̄α̇−

− 3(Dα−S̄+−)D−
α − (u+u−)(D̄−

α̇ W̄ α̇δ̇)D̄−

δ̇
+ (u+u−)(Dα−Wαβ)Dβ−

]

L++
∣

∣

∣
. (4.37)

In the first term of the variation obtained, we can make use of (4.4). This leads to

∮

dµ(−2,−4)β

∫

d4x e

[

−
i

2
(u+u−)Dαα̇D

α−D̄α̇−

]

L++
∣

∣

∣
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=

∮

dµ(−2,−4)β

∫

d4x e

[

−
i

2
(u+u−)

(

∇αα̇ −
1

(u+u−)
Ψαα̇

γ+D−
γ +

1

(u+u−)
Ψαα̇

γ−D+
γ

−
1

(u+u−)
Ψ̄αα̇

+
γ̇ D̄

γ̇− +
1

(u+u−)
Ψ̄αα̇

−
γ̇ D̄

γ̇+ + φαα̇
klJkl

)

Dα−D̄α̇−

]

L++
∣

∣

∣
. (4.38)

This variation can be simplified, in complete analogy with the above calculation, by

systematically moving the Lorentz and SU(2) generators as well as the derivatives D+, D̄+

to the right until they hit L++, at which stage we can use the identity MabL
++ = 0,

eq. (4.27) and the analyticity conditions D+
αL

++ = D̄+
α̇L

++ = 0. We then find

∮

dµ(−2,−4)β

∫

d4x e

[

−
i

2
(u+u−)Dαα̇D

α−D̄α̇−

]

L++
∣

∣

∣

=

∮

dµ(−2,−4)β

∫

d4x e

[

−
i

2
(u+u−)∇αα̇D

α−D̄α̇−−
i

4
Ψαα̇+

α (D−)2D̄−
α̇ −

i

4
Ψ̄αα̇+

α̇ (D̄−)2D−
α

+2φαα̇
+−Dα−D̄α̇−+φαα̇

−−{Dα+, D̄α̇−}+(u+u−)Ψαα̇γ−Dγα̇D
−
α +(u+u−)Ψ̄αα̇γ̇−Dαγ̇D̄

−
α̇

+3i(u+u−)Ψαα̇γ−YαγD̄
−
α̇ − 4iΨαα̇−

α S+−D̄−
α̇ + 4i(u+u−)Ψ̄αα̇γ̇−Gαγ̇D̄

−
α̇

−2i(u+u−)Ψ̄αα̇−
(α̇Gαγ̇)D̄

γ̇− + 3i(u+u−)Ψ̄αα̇γ̇−Ȳα̇γ̇D
−
α − 4iΨ̄αα̇−

α̇ S̄+−D−
α

−4i(u+u−)Ψαα̇γ−Gγα̇D
−
α + 2i(u+u−)Ψαα̇−

(αGβ)α̇D
β− + 3i(u+u−)Ψαα̇γ−(D̄−

α̇ Yαγ)

+3i(u+u−)Ψ̄αα̇γ̇−(D−
α Ȳα̇γ̇) − i(u+u−)Ψαα̇−

α (D̄δ̇−W̄
α̇δ̇

) − i(u+u−)Ψ̄αα̇−
α̇ (D−δWγδ)

−3iΨαα̇−
α (D̄−

α̇ S+−) − 3iΨ̄αα̇−
α̇ (D−

α S̄+−)

]

L++
∣

∣

∣
. (4.39)

Now, in order to cancel out the second, third, fourth and fifth terms, we have to add to

the action one more term

S3 =

∮

dµ(−2,−4)

∫

d4x e

[

i

4
Ψαα̇−

α (D−)2D̄−
α̇ +

i

4
Ψ̄αα̇−

α̇ (D̄−)2D−
α

−φαα̇
−−Dα−D̄α̇−

]

L++
∣

∣

∣
. (4.40)

Evaluating the variation of S3 and combining it with δ(S0 + S1 + S2) gives

δ(S0 + S1 + S2 + S3) =

∮

dµ(−2,−4)β

∫

d4x e

[

−
i

2
(u+u−)∇αα̇D

α−D̄α̇−

+(u+u−)Ψαα̇γ−Dγα̇D
−
α + (u+u−)Ψαα̇−

αDβα̇D
β− + (u+u−)Ψ̄αα̇γ̇−Dαγ̇D̄

−
α̇

+(u+u−)Ψ̄αα̇−
α̇Dαβ̇D̄

β̇− + 3i(u+u−)Ψαα̇γ−YαγD̄
−
α̇ − 9iΨαα̇−

α S+−D̄−
α̇

+4i(u+u−)Ψ̄αα̇γ̇−Gαγ̇D̄
−
α̇ − i(u+u−)Ψ̄αα̇−

γ̇ Gαα̇D̄
γ̇− − i(u+u−)Ψαα̇−

α W̄γ̇α̇D̄
γ̇−

−3(D̄−
α̇ S+−)D̄α̇− − (u+u−)(D̄−

α̇ W̄ α̇δ̇)D̄−
δ̇

+ 3i(u+u−)Ψ̄αα̇γ̇−Ȳα̇γ̇D
−
α − 9iΨ̄αα̇−

α̇ S̄+−D−
α

−4i(u+u−)Ψαα̇γ−Gγα̇D
−
α + i(u+u−)Ψαα̇−

β Gαα̇D
β− − i(u+u−)Ψ̄αα̇−

α̇ WαγD
γ−

−3(Dα−S̄+−)D−
α + (u+u−)(Dα−Wαβ)Dβ− + 3i(u+u−)Ψαα̇γ−(D̄−

α̇ Yαγ)

+3i(u+u−)Ψ̄αα̇γ̇−(D−
α Ȳα̇γ̇) − 3i(u+u−)Ψαα̇−

α (D̄β̇−W̄
α̇β̇

) − 3i(u+u−)Ψ̄αα̇−
α̇ (D−βWαβ)

−9iΨαα̇−
α (D̄−

α̇ S+−) − 9iΨ̄αα̇−
α̇ (D−

α S̄+−)

]

L++
∣

∣

∣
. (4.41)
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Let us consider the first to fifth terms in (4.41) which involve vector covariant derivatives.

In this sector, we apply (4.4), the formula for integration by parts, eq. (4.10), with the

space-time torsion (4.12a) expressed as

Tab
c = −

4i

(u+u−)

(

Ψ[a
γ+Ψ̄b]

−

δ̇
(σc)γ

δ̇ − Ψ[a
γ−Ψ̄b]

+

δ̇
(σc)γ

δ̇
)

. (4.42)

Implementing also the usual iterative procedure, we obtain
∮

dµ(−2,−4)β

∫

d4x e (u+u−)

[

−
i

2
∇αα̇D

α−D̄α̇− + Ψαα̇β−Dβα̇D
−
α + Ψαα̇−

αDβα̇D
β−

+ Ψ̄αα̇γ̇−Dαγ̇D̄
−
α̇ + Ψ̄αα̇−

α̇Dαβ̇
D̄β̇−

]

L++
∣

∣

∣

=

∮

dµ(−2,−4)β

∫

d4x e

[

2(σab)αβΨ[a
β+Ψ̄b]

α̇−D−
α D̄

−
α̇ + 2(σ̃ab)α̇

β̇
Ψ[a

α+Ψ̄b]
β̇−D−

α D̄
−
α̇

+ 2(σab)αβΨ[a
β−Ψ̄b]

α̇+D−
α D̄

−
α̇ + 2(σ̃ab)α̇

β̇
Ψ[a

α−Ψ̄b]
β̇+D−

α D̄
−
α̇ − 2(σab)αβΨa

−
α Ψb

+
β (D−)2

− 2(σ̃ab)α̇β̇Ψ̄a
−
α̇ Ψ̄b

+
β̇
(D̄−)2 − 4(u+u−)(σab)β

γT[a|c|
cΨb]

β−D−
γ

+ 4(u+u−)(σ̃ab)
β̇

γ̇T[a|c|
cΨ̄b]

β̇−D̄−
γ̇ + 4(u+u−)(σab)β

γ(∇[aΨb]
β−)D−

γ

− 4(u+u−)(σ̃ab)
β̇

γ̇(∇[aΨ̄b]
β̇−)D̄−

γ̇ + 12(σab)β
γΨa

β−φb
+−D−

γ − 12(σ̃ab)
β̇

γ̇Ψ̄a
β̇−φb

+−D̄−
γ̇

+ 4(σab)αβΨa
β−Ψ̄b

γ̇−{D̄+
γ̇ ,D−

α } − 4(σ̃ab)α̇
β̇
Ψ̄a

β̇−Ψb
γ−{D+

γ , D̄−
α̇ }

+ 4(σab)αβΨa
β−Ψb

γ−{D+
γ ,D−

α } − 4(σ̃ab)α̇
β̇
Ψ̄a

β̇−Ψ̄b
γ̇−{D̄+

γ̇ , D̄−
α̇ }

− 32(u+u−)(σab)αβΨa
β−Ψ̄b

α̇−Gαα̇ − 8(u+u−)(σab)αβΨa
β−Ψb

γ−Yαγ

− 8(u+u−)(σ̃ab)α̇β̇Ψ̄a
β̇−Ψ̄b

γ̇−Ȳα̇γ̇

]

L++
∣

∣

∣
. (4.43)

In order to cancel the first six terms in (4.43), we have to add to the action one more

structure

S4 =

∮

dµ(−2,−4)

∫

d4x e
[

− 2(σab)αβΨ[a
β−Ψ̄b]

α̇−D−
α D̄

−
α̇ − 2(σ̃ab)α̇β̇Ψ[a

α−Ψ̄b]
β̇−D−

α D̄
−
α̇

+(σab)αβΨa
−
α Ψb

−
β (D−)2 + (σ̃ab)α̇β̇Ψ̄a

−
α̇ Ψ̄b

−

β̇
(D̄−)2

]

L++(z, u+)
∣

∣

∣
(4.44)

and consider the variation δ(S0 + S1 + S2 + S3 + S4). We use (4.4), then move D+, D̄+

derivatives, Lorentz and SU(2) generators to the right. Next we should move to the left

all ∇a derivatives and use the rule for integration by parts, eq. (4.10). At this stage, we

can use the identities

∇[aΨb]
γ− = −

1

8
(σ̃ab)

α̇β̇(Dγ−Ȳ
α̇β̇

)| +
1

8
(σab)

αβ(Dγ−Wαβ)| +
1

4
(σab)

γδD−
δ S̄+−|

+ i(σ[a)
(α

β̇
Ψb]

−
α Gγ)β̇ | −

i

2(u+u−)
(σ̃[a)

α̇γΨ̄b]
+
α̇ S̄−−| +

i

2(u+u−)
(σ̃[a)

α̇γΨ̄b]
−
α̇ S̄+−|

−
i

2
(σ[a)α

α̇Ψ̄b]
−
α̇ W αγ | −

i

2
(σ[a)

γ
β̇
Ψ̄b]

−
α̇ Ȳ α̇β̇| +

1

(u+u−)

{

φ[a
+−Ψb]

γ− − φ[a
−−Ψb]

γ+
}

−
2i

(u+u−)
(σc)δ

δ̇Ψc
γ−
{

Ψ[a
δ+Ψ̄b]

−
δ̇
− Ψ[a

δ−Ψ̄b]
+
δ̇

}

(4.45)
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and

∇[aΨ̄b]
−
γ̇ = −

1

8
(σab)

αβ(D̄−
γ̇ Yαβ)| +

1

8
(σ̃ab)

α̇β̇(D̄−
γ̇ W̄

α̇β̇
)| −

1

4
(σ̃ab)γ̇δ̇

(D̄δ̇−S+−)|

− i(σ[a)
α

(α̇Ψ̄b]
α̇−Gαγ̇)| +

i

2(u+u−)
(σ[a)αγ̇Ψb]

α+S−−| −
i

2(u+u−)
(σ[a)αγ̇Ψb]

α−S+−|

−
i

2
(σ[a)α

δ̇Ψb]
α−W̄

δ̇γ̇
| −

i

2
(σ[a)

β
γ̇Ψb]

α−Yαβ| +
1

(u+u−)

{

φ[a
+−Ψ̄b]

−
γ̇ − φ[a

−−Ψ̄b]
+
γ̇

}

−
2i

(u+u−)
(σc)δ

δ̇
{

Ψ[a
δ+Ψ̄b]

−
δ̇
− Ψ[a

δ−Ψ̄b]
+
δ̇

}

Ψ̄c
−
γ̇ , (4.46)

which follow from (4.12b) and (4.12c). After rather long computation, which involves

algebraic manipulations using some results from appendix A, non-trivial cancellations

occur. One obtains

δ(S0 + S1 + S2 + S3 + S4) =

∮

dµ(−2,−4)β

∫

d4x e
[

− 24(σab)αβΨa
−
α Ψb

−
β S+−

−24(σab)αβΨa
α+Ψb

β−S−− − 24(σ̃ab)
α̇β̇

Ψ̄a
α̇−Ψ̄b

β̇−S̄+− − 24(σ̃cd)
α̇β̇

Ψ̄a
β̇+Ψ̄b

α̇−S̄−−

−6iΨ̄αα̇−
α̇ S̄+−D−

α − 3iΨ̄αα̇
α̇+S̄−−Dα− − 6iΨαα̇−

α S+−D̄−
α̇ − 3iΨαα̇+

α S−−D̄−
α̇

+8(σab)αβφa
+−Ψb

α−Dβ− + 4(σab)αβφa
−−Ψb

α+Dβ− − 8(σ̃ab)
α̇β̇

φa
+−Ψ̄b

α̇−D̄β̇−

−4(σ̃ab)
α̇β̇

φa
−−Ψ̄b

α̇+D̄β̇− − 4εabcm(σm)αα̇Ψa
α+Ψb

β−Ψ̄c
α̇−D−

β

−4εabcm(σm)αα̇Ψa
β−Ψb

α−Ψ̄c
α̇+D−

β − 4εabcm(σm)αα̇Ψa
α−Ψb

β+Ψ̄c
α̇−D−

β

−4εabcm(σm)αα̇Ψa
α+Ψ̄b

α̇−Ψ̄c
β̇−D̄−

β̇
− 4εabcm(σm)αα̇Ψa

α−Ψ̄b
α̇+Ψ̄c

β̇−D̄−
β̇

−4εabcm(σm)αα̇Ψa
α−Ψ̄b

α̇−Ψ̄c
β̇+D̄−

β̇
+ 12εabcm(σm)αα̇φa

−−Ψb
α+Ψ̄c

α̇−

+12εabcm(σm)αα̇φa
−−Ψb

α−Ψ̄c
α̇+ + 24εabcm(σm)αα̇φa

+−Ψb
α−Ψ̄c

α̇−
]

L++
∣

∣

∣
. (4.47)

The nontrivial point is that all terms with four gravitinos have identically cancelled out at

this stage. And one more iteration – we have to add to the action the following structure:

S5 =

∮

dµ(−2,−4)

∫

d4x e
[

3iΨ̄αα̇−
α̇ S̄−−D−

α + 3iΨαα̇−
α S−−D̄−

α̇ + 12(σab)αβΨa
−
α Ψb

−
β S−−

+12(σ̃ab)α̇β̇Ψ̄a
−
α̇ Ψ̄b

−

β̇
S̄−− − 4(σab)βγφa

−−Ψb
γ−Dβ− + 4(σ̃ab)β̇γ̇φa

−−Ψ̄b
−
γ̇ D̄

−

β̇

−12εabcd(σd)γα̇φa
−−Ψb

γ−Ψ̄c
α̇− + 4εabcd(σd)αα̇Ψa

α−Ψb
β−Ψ̄c

α̇−D−
β

+4εabcd(σd)αα̇Ψa
α−Ψ̄b

α̇−Ψ̄c
β̇−D̄−

β̇

]

L++
∣

∣

∣
. (4.48)

This proves to complete the procedure. One can now check that

δ(S0 + S1 + S2 + S3 + S4 + S5) = δS = 0 (4.49)

We have thus demonstrated that the action (4.13) is uniquely obtained from the

requirement of projective invariance.
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4.3 Analysis of the results

The component action (4.13) is the main result of this work. In technical terms, our

procedure for deriving (4.13) from the original superspace action (1.2) has many similarities

with the earlier construction for 5D N = 1 supergravity [2]. There is, however, a very

important conceptual difference. The point is that, unlike the five dimensional analysis

in [2], no Wess-Zumino gauge has been assumed in the process of deriving (4.13).15 In

other words, all the gauge symmetries of the parental superspace action (1.2) are preserved

by its component counterpart (4.13).16 This huge gauge freedom can be used at will

depending on concrete dynamical circumstances. It is worth giving two examples.

The action is invariant under the super-Weyl transformations generated by a covari-

antly chiral parameter σ, D̄i
α̇σ = 0. This local symmetry can be used to choose a useful

gauge condition, for instance, to set the field strength W of the compensating vector mul-

tiplet to be

W = 1 . (4.50)

The action is invariant under local SU(2) transformations generated by a real symmet-

ric parameter Kij that is otherwise unconstrained, see eqs. (A.5) and (A.6). Consider an

off-shell tensor multiplet described by a symmetric real superfield H ij(z),

D(i
αHjk) = D̄

(i
α̇Hjk) = 0 , H ij = Hji , H ij = Hij . (4.51)

Associated with H ij(z) is the O(2) multiplet H++(z, u+) = H ij(z)u+
i u+

j . We will assume

H ij to be nowhere vanishing,

H ijHij 6= 0 , (4.52)

the condition required of a superconformal compensator. Then, the SU(2) gauge freedom

can be partially fixed as

H ij = −
i

2
(σ1)

ij G , Ḡ = G > 0 , (σ1)
ij =

(

0 1

1 0

)

, (4.53)

which leaves an unbroken U(1) gauge symmetry. To be consistent with the con-

straint (4.51), the SU(2) connection should be

Φi
α

jk = iΣi
α(σ1)

jk + εi(jEk)
α ln G , (4.54)

with Σi
α a U(1) connection. We will give an application of the gauge condition (4.53) in

the next subsection.

Let us denote by P(0,4)(u−) the differential operator in the square brackets in (4.13).

Then the component action can be rewritten as

S =

∫

d4x e

∮

C

dµ(−2,−4) P(0,4)(u−)L++(z, u+)
∣

∣ . (4.55)

15A careful analysis of the 5D construction [2] shows that the choice of the Wess-Zumino gauge was not

essential. It is just an unfortunate stereotype forced upon us by textbook lessons [10–12] that choosing

Wess-Zumino gauge is imperative for component reduction.
16Most of purely gauge degrees of freedom are contained in the vielbein and connection superfields for

Di
α and D̄i

α̇. In the construction used, however, these objects do not show up explicitly.
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Without loss of generality, we can assume the north pole of CP 1, i.e. u+i ∝ (0, 1), to be

outside of the integration contour, hence u+ can be represented as

u+i = u+1(1, ζ) = u+1ζi , ζi = (1, ζ) , ζi = εij ζj = (−ζ, 1) , (4.56)

with ζ the local complex coordinate for CP 1. Now, the projective invariance, eqs. (4.18)

and (4.19), can be used to set

u−
i ≡ û−

i = (1, 0) , û−i = εij û−
j = (0,−1) . (4.57)

Finally, representing the Lagrangian in the form

L++(z, u+) = iu+1u+2 L(z, ζ) = i
(

u+1
)2

ζ L(z, ζ) , (4.58)

the action turns into

S = −

∫

d4x eP

∮

C

dζ

2πi
ζ L(z, ζ)

∣

∣ , P := P(0,4)(û−) . (4.59)

The important point is that the operator P is ζ-independent, and therefore its presence is

not relevant when evaluating the contour integral. If the original Lagrangian, L++, depends

on matter superfields only, the contour integral in (4.59) corresponds to that arising in a

rigid superconformal theory [4].

4.4 Application I: gauge invariance of the vector-tensor coupling

Let S(L++) denote the action (1.2). Consider L++
v−t = H++V , where H++(z, u+) is a tensor

multiplet (or a real O(2) multiplet), and V (z, u+) a real weight-zero tropical multiplet

(see [1] for more detail). The latter describes a massless vector multiplet provided there is

gauge invariance

δV = λ + λ̃ , (4.60)

where λ(z, u+) is an arctic weight-zero multiplet, and λ̃(z, u+) its smile conjugate (see [1]

for more detail). We can now prove that the functional S(H++V ) is invariant under the

gauge transformation (4.60). It is sufficient to prove that

S(H++λ) = 0 , (4.61)

for an arbitrary arctic weight-zero superfield λ(z, u+). The latter follows from the fact that

the action (4.13) with L++ = H++λ has no pole in the complex ζ-plane.

4.5 Application II: the c-map

In this subsection we would like to give a curved superspace description for the c-

map [41, 42]. The problem of developing a superspace description for the c-map has

already been discussed in [47] (see also [48]) and [49]. However, since no projective super-

space formulation for 4D N = 2 matter-coupled supergravity was available at that time,

the only possible approach to address the problem was
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(i) to use the existence of a one-to-one correspondence between 4n-dimensional quater-

nionic Kähler spaces and 4(n + 1)-dimensional hyperkähler manifolds possessing a

homothetic Killing vector, and the fact that such hyperkähler spaces (or “hyperkähler

cones” [52]) are the target spaces for rigid N = 2 superconformal sigma models; and

(ii) to construct an appropriate hyperkähler cone associated with a rigid superconformal

model of N = 2 tensor multiplets.

Now, we are in a position to overcome all the limitations of the earlier works.

In accordance with [47], a tensor multiplet model corresponding to the c-map is de-

scribed by the Lagrangian

L++ =
1

2iH++
0

(

F (H++
I ) − F̄ (H++

I )
)

, I = 1, . . . , N + 1 . (4.62)

Here H++
I and H++

0 are tensor multiplets, with H++
0 obeying the constraint (4.52), and

F (zI) is a holomorphic homogeneous function of second degree, F (c zI) = c2F (zI). Thus

we have to consider the following action:

S = Im

∫

d4x eP

∮

C

dζ

2πi

F
(

HI(ζ)
)

H0(ζ)

∣

∣

∣
, (4.63)

where the superfields HI(ζ) and H0(ζ) are defined as

H++
I (z, u+) = i

(

u+1
)2

HI(z, ζ) , HI(ζ) = ΦI + ζGI − ζ2Φ̄I , (4.64)

and similarly for H0(ζ).

Before we start studying the curved-superspace action (4.63), it is worth giving some

comments about its flat superspace version. Let Pflat and Lflat be the flat-superspace

counterparts of the operator P (4.59) and the Lagrangian L (4.58). We obviously have

Pflat =
1

16
(D1)2(D̄1)2 =

1

16
(D1)2(D̄2)

2 , (4.65)

with Di
α and D̄α̇

i the flat spinor covariant derivatives. It is easy to see that the flat-

superspace version of the analyticity conditions (1.1) implies (D̄α̇
1 + ζD̄α̇

2 )Lflat(ζ) = 0, and

thus for the rigid supersymmetric action Sflat we get

Sflat = Im

∫

d4x

∮

C

dζ

2πi
Pflat

F
(

HI(ζ)
)

H0(ζ)

∣

∣

∣
= Im

∫

d4x
(D1)2(D̄1)

2

16

∮

C

dζ

2πiζ2

F
(

HI(ζ)
)

H0(ζ)

∣

∣

∣

= Im

∫

d4xd2θd2θ̄

∮

C

dζ

2πiζ2

F
(

HI(ζ)
)

H0(ζ)

∣

∣

∣

θ2=θ̄2=0
(4.66)

The action obtained defines an N = 2 supersymmetric theory formulated in N = 1 super-

space. It is the N = 2 superconformal model which was studied in [47, 49].

In [47], the problem of evaluating the contour integral in (4.66) was reduced to that

solved several years earlier in [53] (see also [52]) for the case of the rigid c-map. Specifically,

Roček et al. [47] imposed the SU(2) gauge condition (4.53) or, equivalently, H0(ζ) = ζG0,
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which essentially corresponds the rigid c-map (more precisely, G0 = 1 in the case of the

rigid c-map, but the presence of G0 is irrelevant for computing the contour integral). The

subtlety with the analysis in [47] is that their tensor multiplet model is rigid superconformal,

and hence the SU(2) parameters are constant.17

In our case, however, the SU(2) transformations are local, and it is legitimate to choose

the gauge condition (4.53). As a result, the action turns into

S = Im

∫

d4x eP
F
(

ΦI

)

G0

∣

∣

∣
(4.67)

provided the contour C in (4.63) is taken to be a circle around the origin in C. Still, the

consideration given is not quite satisfactory, because of a special gauge chosen.

Fortunately, there is no need to impose any SU(2) gauge condition in order to do the

contour integral in (4.63). Following the rigid supersymmetric analysis of [49], we represent

H0(ζ) = −Φ̄0

(

ζ − ζ+

)(

ζ − ζ−

)

, ζ± =
1

2Φ̄0

(

G0 ∓
√

G2
0 + 4|Φ0|2

)

(4.68)

and choose the contour C in (4.63) to be a small circle around the root ζ+. This leads to

S = Im

∫

d4x eP
F
(

HI(ζ+)
)

√

G2
0 + 4|Φ0|2

∣

∣

∣
. (4.69)

Since

ζ+ = −
2Φ0

(

G0 +
√

G2
0 + 4|Φ0|2

)

Φ0→0
−→ 0 , (4.70)

the covariant action (4.69) reduces to (4.67) in the limit Φ0 → 0. In the flat superspace

limit, we reproduce the results of [47, 49].

5 Chiral representation for the action principle

In this section we derive a new representation for the action principle (1.2) as an integral

over the chiral subspace.

The covariantly chiral projector ∆̄ was defined in section 3, eq. (3.23). It turns out

that ∆̄ can be given an alternative representation. It is

∆̄

∮

(u+du+)U (−2) =
1

16

∮

(u+du+)

(u+u−)2

(

(D̄−)2 + 4S̄−−
)(

(D̄+)2 + 4S̄++
)

U (−2) , (5.1)

with U (−2)(z, u+) an arbitrary isotwistor superfield of weight −2 (see [1] for the definition of

isotwistor supermultiplets, as well as appendix B below). As before, the constant isotwistor

u−
i is chosen to be linearly independent from u+

i , (u+u−) 6= 0, but otherwise is completely

arbitrary. It is proved in appendix C that that the right-hand side of (5.1)

(i) remains invariant under arbitrary projective transformations (1.6); and

17Actually, in the case of rigid N = 2 supersymmetry, if a tensor multiplet is constrained as in eq. (4.53),

then it is simply constant, G = const.
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(ii) is covariantly chiral.

Let us transform the action functional (1.2) by making use of eqs. (3.22) and (5.1):

S(L++) =
1

2π

∫

d4xd4θd4θ̄ E

∮

(u+du+)
WW̄L++

(Σ++)2

=
1

2π

∫

d4xd4θ E ∆̄

∮

(u+du+)
WW̄L++

(Σ++)2

=
1

32π

∫

d4xd4θ E

∮

(u+du+)

(u+u−)2

(

(D̄−)2 + 4S̄−−
)(

(D̄+)2 + 4S̄++
)WW̄L++

(Σ++)2

=
1

8π

∫

d4xd4θ E W

∮

(u+du+)

(u+u−)2

(

(D̄−)2 + 4S̄−−
)L++

Σ++
, (5.2)

where we have used eq. (1.3), the chirality of the vector multiplet strength, D̄α̇
i W = 0, and

the fact that L++, Σ++ and Σ̄++ obey the constrains (1.1). This result can be interpreted

as a coupling of two vector multiplets described by the covariantly chiral field strengths W

and W, respectively.

S(L++) = −

∫

d4xd4θ E W W ,

W = −
1

8π

∮

(u+du+)

(u+u−)2

(

(D̄−)2 + 4S̄−−
)

V , V :=
L++

Σ++
. (5.3)

The composite superfield V introduced can be interpreted as a tropical prepotential for the

vector multiplet described by W.

Let us choose the Lagrangian in (5.2) to be L++ = H++λ, where H++(z, u+) is a

tensor multiplet, and λ(z, u+) an arctic multiplet. Since both H++ and λ are independent

of the vector multiplet described by the strengths W and W̄ , the latter can be chosen such

that Σ++ = H++. Then

S(H++λ) =
1

8π

∫

d4xd4θ E W
(

(D̄−)2 + 4S̄−−
)

∮

(u+du+)

(u+u−)2
λ(z, u+) . (5.4)

We can now represent u+i in the form (4.56) and fix the projective invariance by choosing

u−
i as in (4.57).

S(H++λ) = −
1

8π

∫

d4xd4θ E W
(

(D̄1)2 + 4S̄11
)

∮

dζ λ(z, ζ) = 0 , (5.5)

since the integrand of the contour integral possesses no pole in the ζ-plane. This com-

pletes our second proof of the fact that the vector-tensor coupling L++
v−t = H++V , with

H++(z, u+) is a tensor multiplet and V (z, u+) the tropical prepotential of a vector multi-

plet, is invariant under the gauge transformations (4.60).

In ref. [6], it was postulated that any chiral integral of the form

Sc =

∫

d4xd4θ E Lc + c.c. , D̄α̇Lc = 0 , (5.6)
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can be represented as follows:

Sc =
1

2π

∮

(u+du+)

∫

d4xd4θd4θ̄ E
WW̄L++

c

(Σ++)2
,

L++
c = −

1

4
V

{

(

(D+)2 + 4S++
)Lc

W
+
(

(D̄+)2 + 4S̄++
) L̄c

W̄

}

, (5.7)

with V (z, u+) a tropical prepotential for the vector multiplet characterized by the field

strength W . This assertion can now be immediately proved with the aid of (5.2).
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A Superspace geometry of conformal supergravity

Consider a curved 4D N = 2 superspace M4|8 parametrized by local bosonic (x) and

fermionic (θ, θ̄) coordinates zM = (xm, θµ
i , θ̄i

µ̇), where m = 0, 1, · · · , 3, µ = 1, 2, µ̇ = 1, 2

and i = 1, 2. The Grassmann variables θµ
i and θ̄i

µ̇ are related to each other by complex

conjugation: θµ
i = θ̄µ̇i. The structure group is chosen to be SO(3, 1) × SU(2) [1, 54], and

the covariant derivatives DA = (Da,D
i
α, D̄α̇

i ) have the form

DA = EA + ΩA + ΦA . (A.1)

Here EA = EA
M (z)∂M is the supervielbein, with ∂M = ∂/∂zM ,

ΩA =
1

2
ΩA

bcMbc = ΩA
βγ Mβγ + Ω̄A

β̇γ̇ M̄
β̇γ̇

(A.2)

is the Lorentz connection,

ΦA = ΦA
klJkl , Jkl = Jlk (A.3)

is the SU(2)-connection. The Lorentz generators with vector indices (Mab = −Mba) and

spinor indices (Mαβ = Mβα and M̄
α̇β̇

= M̄
β̇α̇

) are related to each other by the rule:

Mab = (σab)
αβMαβ − (σ̃ab)

α̇β̇M̄
α̇β̇

, Mαβ =
1

2
(σab)αβMab , M̄

α̇β̇
= −

1

2
(σ̃ab)

α̇β̇
Mab .

The generators of SO(3,1)×SU(2) act on the covariant derivatives as follows:18

[Jkl,D
i
α] = −δi

(kDαl) , [Jkl, D̄
α̇
i ] = −εi(kD̄

α̇
l) ,

[Mαβ ,Di
γ ] = εγ(αD

i
β) , [M̄

α̇β̇
, D̄i

γ̇ ] = εγ̇(α̇D̄
i
β̇)

, [Mab,Dc] = 2ηc[aDb] , (A.4)

18In what follows, the (anti)symmetrization of n indices is defined to include a factor of (n!)−1.
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while [Mαβ, D̄i
γ̇ ] = [M̄

α̇β̇
,Di

γ ] = [Jkl,Da] = 0. Our notation and conventions correspond

to [1, 12]; they almost coincide with those used in [10] except for the normalization of the

Lorentz generators, including a sign in the definition of the sigma-matrices σab and σ̃ab.

The supergravity gauge group is generated by local transformations of the form

δKDA = [K,DA] , K = KC(z)DC +
1

2
Kcd(z)Mcd + Kkl(z)Jkl , (A.5)

with the gauge parameters obeying natural reality conditions, but otherwise arbitrary.

Given a tensor superfield U(z), with its indices suppressed, it transforms as follows:

δKU = K U . (A.6)

The covariant derivatives obey (anti-)commutation relations of the form:

[DA,DB} = TAB
CDC +

1

2
RAB

cdMcd + RAB
klJkl , (A.7)

where TAB
C is the torsion, and RAB

kl and RAB
cd constitute the curvature. The torsion is

subject to the following constraints [54]:

T i
α

j
β

c = T i
α

j
β

γ
k = T i

α
j
β

k
γ̇ = T i

α
β̇
j

γ
k = Ta

j
β

c = Tab
c = 0 ,

T i
α

β̇
j

c = −2iδi
j(σ

c)α
β̇ , Ta

j
β

γ
k = δj

k Taβ
γ . (A.8)

Here we have omitted some constraints which follow by complex conjugation. The algebra

of covariant derivatives is [1]

{Di
α,Dj

β} = 4SijMαβ + 2εijεαβY γδMγδ + 2εijεαβW̄ γ̇δ̇M̄
γ̇δ̇

+2εαβεijSklJkl + 4YαβJ ij , (A.9a)

{D̄α̇
i , D̄β̇

j } = −4S̄ijM̄
α̇β̇ − 2εijε

α̇β̇ Ȳ γ̇δ̇M̄
γ̇δ̇

− 2εijε
α̇β̇W γδMγδ

−2εijε
α̇β̇S̄klJkl − 4Ȳ α̇β̇Jij , (A.9b)

{Di
α, D̄β̇

j } = −2iδi
j(σ

c)α
β̇Dc + 4δi

jG
δβ̇Mαδ + 4δi

jGαγ̇M̄ γ̇β̇ + 8Gα
β̇J i

j , (A.9c)

[Da,D
j
β] = i(σa)(β

β̇Gγ)β̇D
γj +

i

2

(

(σa)βγ̇Sjk − εjk(σa)β
δ̇W̄δ̇γ̇ − εjk(σa)

α
γ̇Yαβ

)

D̄γ̇
k

+
i

2

(

(σa)β
δ̇Tcd

j

δ̇
+ (σc)β

δ̇Tad
j

δ̇
− (σd)β

δ̇Tac
j

δ̇

)

M cd

+
i

2

(

(σ̃a)
γ̇γεj(kD̄

l)
γ̇ Yβγ − (σa)βγ̇εj(kD̄

l)

δ̇
W̄ γ̇δ̇ −

1

2
(σa)β

γ̇D̄j
γ̇Skl

)

Jkl , (A.9d)

[Da, D̄
β̇
j ] = −i(σa)α

(β̇Gαγ̇)D̄γ̇j +
i

2

(

(σ̃a)
β̇γS̄jk − εjk(σa)α

β̇W αγ − εjk(σa)
γ

α̇Ȳ α̇β̇
)

Dk
γ

+
i

2

(

(σ̃a)δ
β̇Tcd

δ
j + (σc)δ

β̇Tad
δ
j − (σd)δ

β̇Tac
δ
j

)

M cd

+
i

2

(

− (σa)
γ

γ̇δ
(k
j Dl)

γ Ȳ β̇γ̇ − (σa)γ
β̇δ

(k
j D

l)
δ W γδ +

1

2
(σa)α

β̇Dα
j S̄kl

)

Jkl , (A.9e)
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where

Tab
γ
k = −

1

4
(σ̃ab)

α̇β̇Dγ
k Ȳ

α̇β̇
+

1

4
(σab)

αβDγ
kWαβ −

1

6
(σab)

γδDl
δS̄kl , (A.10a)

Tab
k
γ̇ = −

1

4
(σab)

αβD̄k
γ̇Yαβ +

1

4
(σ̃ab)

α̇β̇D̄k
γ̇W̄

α̇β̇
−

1

6
(σ̃ab)γ̇δ̇

D̄δ̇
l S

kl . (A.10b)

Here the real four-vector Gαα̇, the complex symmetric tensors Sij = Sji, Wαβ = Wβα,

Yαβ = Yβα and their complex conjugates S̄ij := Sij , W̄
α̇β̇

:= Wαβ, Ȳ
α̇β̇

:= Yαβ obey

additional constraints implied by the Bianchi identities. They comprise the dimension 3/2

identities [1, 54]:

Dk
αSkl + Dγ

l Yγα = 0 , D(i
α Sjk) = D̄

(i
α̇ Sjk) = 0 , Di

(αYβγ) = 0 , Di
αW̄β̇γ̇ = 0 , (A.11)

D̄α̇
k S̄kl + D̄l

γ̇Ȳ γ̇α̇ = 0 , D̄α̇
(iS̄jk) = Dα

(iS̄jk) = 0 , D̄
(α̇
i Ȳ β̇γ̇) = 0 , D̄α̇

i W βγ = 0 , (A.12)

Di
αGβγ̇ = −

1

4
D̄i

γ̇Yαβ +
1

12
εαβD̄γ̇lS

il −
1

4
εαβD̄

δ̇iW̄
γ̇δ̇

, (A.13)

D̄α̇
i Gγβ̇ =

1

4
Dγ

i Ȳ α̇β̇ −
1

12
εα̇β̇DγlS̄il +

1

4
εα̇β̇DδiW

γδ . (A.14)

It should be remarked that the constraints (A.8) are invariant under super-Weyl trans-

formations generated by a covariantly chiral superfield σ

D̄α̇
i σ = 0 . (A.15)

The reader is referred to [1, 9] for the transformation laws of the covariant derivatives and

torsion superfields under the super-Weyl transformations.

B Projective supermultiplets

A projective supermultiplet of weight n, Q(n)(z, u+), is a scalar superfield that lives on

M4|8, is holomorphic with respect to the isotwistor variables u+
i on an open domain of

C2 \ {0}. The variable u+
i are constant and invariant under the structure group action.

The projective supermultiplet of weight n is characterized by the following conditions:

(i) it obeys the covariant analyticity constraints (1.1);

(ii) it is a homogeneous function of u+ of degree n, that is,

Q(n)(z, c u+) = cn Q(n)(z, u+) , c ∈ C
∗ ; (B.1)

(iii) gauge transformations (A.5) act on Q(n) as follows:

δKQ(n) =
(

KCDC + KijJij

)

Q(n) ,

KijJijQ
(n) = −

1

(u+u−)

(

K++D(−1,1) − n K+−
)

Q(n) , K±± = Kij u±
i u±

j , (B.2)

where

D(−1,1) = u−i ∂

∂u+i
, D(1,−1) = u+i ∂

∂u−i
. (B.3)
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The transformation law (B.2) involves an additional isotwistor, u−
i , which is subject to

the only condition (u+u−) := u+iu−
i 6= 0, and is otherwise completely arbitrary. By

construction, Q(n) is independent of u−, i.e. ∂Q(n)/∂u−i = 0, and hence D(1,−1)Q(n) = 0.

One can see that δKQ(n) is also independent of the isotwistor u−, ∂(δKQ(n))/∂u−i = 0,

due to (B.1).

More generally, a weight-n isotwistor superfield U (n)(z, u+) is defined to live on M4|8,

be holomorphic with respect to the isotwistor variables u+
i on an open domain of C2 \ {0},

and satisfy the conditions (ii) and (iii).

The operators D+
α and D̄+

α̇ obey the anti-commutation relations:

{D+
α ,D+

β } = 4Yαβ J++ + 4S++Mαβ , {D+
α , D̄+

β̇
} = 8G

αβ̇
J++ , (B.4)

where J++ := u+
i u+

j J ij and S++ := u+
i u+

j Sij. It follows from (B.2)

J++ Q(n) = 0 , J++ ∝ D(1,−1) , (B.5)

and hence the covariant analyticity constraints (1.1) are consistent.

We refer the reader to [1, 9] for a more complete analysis of projective supermulti-

plets including their super-Weyl transformation laws and the definition of the “smile” (or

analyticity-preserving) conjugation.

C On the chiral projector

In this appendix we prove that the right hand side of (5.1)

1. is invariant under arbitrary projective transformations (4.17), (4.18) and (4.19); and

2. is covariantly chiral.

The expression (5.1) is manifestly invariant under arbitrary re-scalings of u+, eq. (4.17),

as well as under the α-transformations (4.18). It remains to check invariance under infinites-

imal β-transformations (4.18), with the parameter β(t) constrained as in (4.19). Applying

the β-transformation gives

δ
(

(D̄−)2 + 4S̄−−
)(

(D̄+)2 + 4S̄++
)

U (−2) = 4βD(−1,1)S̄++
(

(D̄+)2 + 4S̄++
)

U (−2). (C.1)

Then, using (4.19) and the identity

d

dt
V (+2) = 2

(u̇+u−)

(u+u−)
V (+2) −

(u̇+u+)

(u+u−)
D(−1,1)V (+2) , (C.2)

which holds for any isotwistor superfield V (+2) of weight +2, such as the superfield

S̄++
(

(D̄+)2 + 4S̄++
)

U (−2) appearing on the right of (C.1), it follows that

β
(u̇+u+)

(u+u−)2
D(−1,1)V (+2) = −

d

dt

( β

(u+u−)
V (+2)

)

. (C.3)

This indeed demonstrates that the right hand side of (5.1) is projective invariant.

– 34 –



J
H
E
P
0
4
(
2
0
0
9
)
0
0
7

Now let us prove that the right hand side of (5.1) is covariantly chiral. First of all,

consider a weight-zero isotwistor superfield P (z, u+) such that

D̄+
α̇ P = 0 . (C.4)

An example of such a superfield is
(

(D̄+)2 + 4S̄++
)

U (−2). Using the identities

J−−P = −(u+u−)D(−1,1)P , (C.5)

D̄−
α̇

(

(D̄−)2 + 4S̄−−
)

= −4S̄−−D̄β̇−M̄α̇β̇ − 4Ȳα̇β̇D̄
β̇−J−− −

4

3
(D̄α̇qS̄

q−)J−− , (C.6)

[D̄+
α̇ , (D̄−)2]P =

(

4(D̄−
α̇ S̄+−) − 4(u+u−)Ȳ

α̇β̇
D̄β̇−

−4D−−S̄++D̄−
α̇ − 2D−−(D̄−

α̇ S̄++)
)

P , (C.7)

one can show that

D̄α̇k

(

(D̄−)2 + 4S̄−−
)

P =
1

(u+u−)

[

u+
k D̄

−
α̇ − u−

k D̄
+
α̇

](

(D̄−)2 + 4S̄−−
)

P

=
D(−1,1)

(u+u−)

(

2u−
k (D̄−

α̇ S̄++) + 4u−
k S̄++D̄−

α̇ + 4u+
k (u+u−)Ȳα̇β̇D̄

β̇− − 2u+
k (D̄+

α̇ S̄−−)
)

P . (C.8)

Secondly, we notice that for any superfield V
(+2)
k (z, u+), which is homogeneous in u+

i of

degree +2, the following identity holds

(u̇+u+)

(u+u−)3
D(−1,1)V

(+2)
k = −

d

dt

( 1

(u+u−)2
V

(+2)
k

)

. (C.9)

Using (C.8) and (C.9), one can then prove that

D̄α̇k

∮

(u+du+)

(u+u−)2

(

(D̄−)2 + 4S̄−−
)(

(D̄+)2 + 4S̄++
)

U (−2) = 0 . (C.10)

As a result, the right hand side of (5.1) is indeed covarianly chiral.
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